Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 10 of 23
Filtering by

Clear all filters

163469-Thumbnail Image.png
Description

This report attempts to understand the effects of the many aspects that pertain to a woman’s path into the construction industry and their role in limiting women’s overall representation in the construction industry. More specifically, it aims to understand how upbringing, background, and culture impact women that do pursue careers

This report attempts to understand the effects of the many aspects that pertain to a woman’s path into the construction industry and their role in limiting women’s overall representation in the construction industry. More specifically, it aims to understand how upbringing, background, and culture impact women that do pursue careers in the construction industry. This paper presents some of the current and prominent issues being faced by women in in the construction industry, including those in the trades. These issues then contribute to their lack of representation and forceful exit. Additionally, it assesses personal narratives from a localized group of women who are currently employed at a large construction company. This information and these narratives are analyzed jointly to try and gain a better understanding of the current challenges being faced by women in comparison to those reported previously. This joint comparison allows for a deeper understanding of women’s perception of the construction industry as a whole.

ContributorsContreras, Marisa (Author) / Lou, Yingyan (Thesis director) / Parrish, Kristen (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of Social Transformation (Contributor) / Civil, Environmental and Sustainable Eng Program (Contributor)
Created2022-05
164826-Thumbnail Image.jpg
Description

Spatial audio can be especially useful for directing human attention. However, delivering spatial audio through speakers, rather than headphones that deliver audio directly to the ears, produces the issue of crosstalk, where sounds from each of the two speakers reach the opposite ear, inhibiting the spatialized effect. A research team

Spatial audio can be especially useful for directing human attention. However, delivering spatial audio through speakers, rather than headphones that deliver audio directly to the ears, produces the issue of crosstalk, where sounds from each of the two speakers reach the opposite ear, inhibiting the spatialized effect. A research team at Meteor Studio has developed an algorithm called Xblock that solves this issue using a crosstalk cancellation technique. This thesis project expands upon the existing Xblock IoT system by providing a way to test the accuracy of the directionality of sounds generated with spatial audio. More specifically, the objective is to determine whether the usage of Xblock with smart speakers can provide generalized audio localization, which refers to the ability to detect a general direction of where a sound might be coming from. This project also expands upon the existing Xblock technique to integrate voice commands, where users can verbalize the name of a lost item using the phrase, “Find [item]”, and the IoT system will use spatial audio to guide them to it.

ContributorsSong, Lucy (Author) / LiKamWa, Robert (Thesis director) / Berisha, Visar (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05
164811-Thumbnail Image.png
Description

When the Covid-19 virus began to spread worldwide in the spring of 2020, life across the globe changed rapidly. Government restrictions required people to move into prolonged social isolation and the resulting impact of this isolation on mental health has been profound (Brooks et al., 2020). Initial research has begun

When the Covid-19 virus began to spread worldwide in the spring of 2020, life across the globe changed rapidly. Government restrictions required people to move into prolonged social isolation and the resulting impact of this isolation on mental health has been profound (Brooks et al., 2020). Initial research has begun to be conducted to understand the scope of how social isolation and the pandemic have influenced people’s psychological well-being. Thus far there has been a marked increase in depression and anxiety disorders (Eyice Karabacak et al., 2021). Agoraphobia is an anxiety disorder that is characterized by fear and avoidance of certain settings. Undoubtedly, fear and avoidance of certain settings during the pandemic cannot be considered abnormal behavior as it is in line with a normative response to such a threatening phenomenon. This study investigates how normative avoidance of certain settings during the pandemic may have now evolved into fear of the settings themselves. In particular, it tested if the start of the pandemic is associated with the prevalence rate of Agoraphobia. This was done via a retrospective study that uses self-report data to examine whether participants presented symptoms of Agoraphobia prior to the start of the pandemic and if they currently exhibit symptoms of Agoraphobia. In addition to the study, the website designed to host this study also provided mental health resources to participants, in light of the documented increase in mental illness since the start of the pandemic (Brooks et al., 2020).

ContributorsFranke, Jillian (Author) / Peterson, Bria (Co-author) / Clough, Michael (Thesis director) / Lanphier, Erin (Committee member) / Barrett, The Honors College (Contributor) / Civil, Environmental and Sustainable Eng Program (Contributor)
Created2022-05
165544-Thumbnail Image.png
Description

Video playback is currently the primary method coaches and athletes use in sports training to give feedback on the athlete's form and timing. Athletes will commonly record themselves using a phone or camera when practicing a sports movement, such as shooting a basketball, to then send to their coach for

Video playback is currently the primary method coaches and athletes use in sports training to give feedback on the athlete's form and timing. Athletes will commonly record themselves using a phone or camera when practicing a sports movement, such as shooting a basketball, to then send to their coach for feedback on how to improve. In this work, we present Augmented Coach, an augmented reality tool for coaches to give spatiotemporal feedback through a 3-dimensional point cloud of the athlete. The system allows coaches to view a pre-recorded video of their athlete in point cloud form, and provides them with the proper tools in order to go frame by frame to both analyze the athlete's form and correct it. The result is a fundamentally new concept of an interactive video player, where the coach can remotely view the athlete in a 3-dimensional form and create annotations to help improve their form. We then conduct a user study with subject matter experts to evaluate the usability and capabilities of our system. As indicated by the results, Augmented Coach successfully acts as a supplement to in-person coaching, since it allows coaches to break down the video recording in a 3-dimensional space and provide feedback spatiotemporally. The results also indicate that Augmented Coach can be a complete coaching solution in a remote setting. This technology will be extremely relevant in the future as coaches look for new ways to improve their feedback methods, especially in a remote setting.

ContributorsDbeis, Yasser (Author) / Channar, Sameer (Co-author) / Richards, Connor (Co-author) / LiKamWa, Robert (Thesis director) / Jayasuriya, Suren (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05
165564-Thumbnail Image.png
Description

Video playback is currently the primary method coaches and athletes use in sports training to give feedback on the athlete’s form and timing. Athletes will commonly record themselves using a phone or camera when practicing a sports movement, such as shooting a basketball, to then send to their coach for

Video playback is currently the primary method coaches and athletes use in sports training to give feedback on the athlete’s form and timing. Athletes will commonly record themselves using a phone or camera when practicing a sports movement, such as shooting a basketball, to then send to their coach for feedback on how to improve. In this work, we present Augmented Coach, an augmented reality tool for coaches to give spatiotemporal feedback through a 3-dimensional point cloud of the athlete. The system allows coaches to view a pre-recorded video of their athlete in point cloud form, and provides them with the proper tools in order to go frame by frame to both analyze the athlete’s form and correct it. The result is a fundamentally new concept of an interactive video player, where the coach can remotely view the athlete in a 3-dimensional form and create annotations to help improve their form. We then conduct a user study with subject matter experts to evaluate the usability and capabilities of our system. As indicated by the results, Augmented Coach successfully acts as a supplement to in-person coaching, since it allows coaches to break down the video recording in a 3-dimensional space and provide feedback spatiotemporally. The results also indicate that Augmented Coach can be a complete coaching solution in a remote setting. This technology will be extremely relevant in the future as coaches look for new ways to improve their feedback methods, especially in a remote setting.

ContributorsChannar, Sameer (Author) / Dbeis, Yasser (Co-author) / Richards, Connor (Co-author) / LiKamWa, Robert (Thesis director) / Jayasuriya, Suren (Committee member) / Barrett, The Honors College (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05
165566-Thumbnail Image.png
Description

Video playback is currently the primary method coaches and athletes use in sports training to give feedback on the athlete’s form and timing. Athletes will commonly record themselves using a phone or camera when practicing a sports movement, such as shooting a basketball, to then send to their coach for

Video playback is currently the primary method coaches and athletes use in sports training to give feedback on the athlete’s form and timing. Athletes will commonly record themselves using a phone or camera when practicing a sports movement, such as shooting a basketball, to then send to their coach for feedback on how to improve. In this work, we present Augmented Coach, an augmented reality tool for coaches to give spatiotemporal feedback through a 3-dimensional point cloud of the athlete. The system allows coaches to view a pre-recorded video of their athlete in point cloud form, and provides them with the proper tools in order to go frame by frame to both analyze the athlete’s form and correct it. The result is a fundamentally new concept of an interactive video player, where the coach can remotely view the athlete in a 3-dimensional form and create annotations to help improve their form. We then conduct a user study with subject matter experts to evaluate the usability and capabilities of our system. As indicated by the results, Augmented Coach successfully acts as a supplement to in-person coaching, since it allows coaches to break down the video recording in a 3-dimensional space and provide feedback spatiotemporally. The results also indicate that Augmented Coach can be a complete coaching solution in a remote setting. This technology will be extremely relevant in the future as coaches look for new ways to improve their feedback methods, especially in a remote setting.

ContributorsRichards, Connor (Author) / Dbeis, Yasser (Co-author) / Channar, Sameer (Co-author) / LiKamWa, Robert (Thesis director) / Jayasuriya, Suren (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor) / School of International Letters and Cultures (Contributor)
Created2022-05
165433-Thumbnail Image.png
Description

Augmented Reality (AR) especially when used with mobile devices enables the creation of applications that can help students in chemistry learn anything from basic to more advanced concepts. In Chemistry specifically, the 3D representation of molecules and chemical structures is of vital importance to students and yet when printed in

Augmented Reality (AR) especially when used with mobile devices enables the creation of applications that can help students in chemistry learn anything from basic to more advanced concepts. In Chemistry specifically, the 3D representation of molecules and chemical structures is of vital importance to students and yet when printed in 2D as on textbooks and lecture notes it can be quite hard to understand those vital 3D concepts. ARsome Chemistry is an app that aims to utilize AR to display complex and simple molecules in 3D to actively teach students these concepts through quizzes and other features. The ARsome chemistry app uses image target recognition to allow students to hand-draw or print line angle structures or chemical formulas of molecules and then scan those targets to get 3D representation of molecules. Students can use their fingers and the touch screen to zoom, rotate, and highlight different portions of the molecule to gain a better understanding of the molecule's 3D structure. The ARsome chemistry app also features the ability to utilize image recognition to allow students to quiz themselves on drawing line-angle structures and show it to the camera for the app to check their work. The ARsome chemistry app is an accessible and cost-effective study aid platform for students for on demand, interactive, 3D representations of complex molecules.

ContributorsEvans, Brandon (Author) / LiKamWa, Robert (Thesis director) / Johnson, Mina (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05
165880-Thumbnail Image.png
Description
The monsoon season is an important part of Arizona's ecosystem as it provides 33% of Maricopa's annual rainfall. However, the monsoon also brings storms with high rainfall intensity which can cause floods. As Maricopa continues to expand and become more urbanized, it may become more susceptible to flooding. This project

The monsoon season is an important part of Arizona's ecosystem as it provides 33% of Maricopa's annual rainfall. However, the monsoon also brings storms with high rainfall intensity which can cause floods. As Maricopa continues to expand and become more urbanized, it may become more susceptible to flooding. This project analyzes watersheds across Maricopa County to determine the amount of runoff that occurs for a given rainfall event.
ContributorsHagstrom, Jon (Author) / Mascaro, Giuseppe (Thesis director) / Vivoni, Enrique (Committee member) / Barrett, The Honors College (Contributor) / Civil, Environmental and Sustainable Eng Program (Contributor)
Created2022-05
Description

Computer-based auditory training programs (CBATPs) are used as an at-home aural rehabilitation solution in individuals with hearing impairment, most commonly in recipients of cochlear implants or hearing aids. However, recent advancements in spatial audio and immersive gameplay have not seen inclusion in these programs. Isle Aliquo, a virtual-reality CBATP, is

Computer-based auditory training programs (CBATPs) are used as an at-home aural rehabilitation solution in individuals with hearing impairment, most commonly in recipients of cochlear implants or hearing aids. However, recent advancements in spatial audio and immersive gameplay have not seen inclusion in these programs. Isle Aliquo, a virtual-reality CBATP, is designed to reformat traditional rehabilitation exercises into virtual 3D space. The program explores how the aural exercise outcomes of detection, discrimination, direction, and identification can be improved with the incorporation of directional spatial audio, as well as how the experience can be made more engaging to improve adherence to training routines. Fundamentals of professional aural rehabilitation and current CBATP design inform the structure of the exercise modules found in Isle Aliquo.

ContributorsVoitek, Julian (Author) / Thorn, Seth (Thesis director) / LiKamWa, Robert (Committee member) / Barrett, The Honors College (Contributor) / Arts, Media and Engineering Sch T (Contributor)
Created2022-05
165905-Thumbnail Image.jpg
ContributorsVoitek, Julian (Author) / Thorn, Seth (Thesis director) / LiKamWa, Robert (Committee member) / Barrett, The Honors College (Contributor) / Arts, Media and Engineering Sch T (Contributor)
Created2022-05