Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 10 of 185
Filtering by

Clear all filters

131519-Thumbnail Image.png
Description
As a student and then an Undergraduate Teaching Assistant (UGTA), I have had the opportunity to personally witness the learning process of both myself and approximately 75 additional incoming Civil Engineering students taking the Mechanics courses after me. While watching the student learning process as an UGTA, I realized that

As a student and then an Undergraduate Teaching Assistant (UGTA), I have had the opportunity to personally witness the learning process of both myself and approximately 75 additional incoming Civil Engineering students taking the Mechanics courses after me. While watching the student learning process as an UGTA, I realized that there were consistent points of confusion amongst the students that the teaching staff could not efficiently communicate with the electronic or physical classroom materials available. As a physical learner, I am able to learn more comprehensively if I have a physical model to manipulate, and often found myself in the position of wanting to be able to physically represent and manipulate the systems being studied in class.
ContributorsCamillucci, Allyson Nicole (Co-author, Co-author) / Hjelmstad, Keith (Thesis director) / Chatziefstratiou, Efthalia (Committee member) / Civil, Environmental and Sustainable Eng Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131523-Thumbnail Image.png
Description
Due to deficient student and new graduate nursing knowledge regarding critical care nursing skills, this project was designed to create additional resources to support increased education and competency. The specific skills identified by veteran nurses as an area of knowledge deficiency among student and new graduate nurses were those relating

Due to deficient student and new graduate nursing knowledge regarding critical care nursing skills, this project was designed to create additional resources to support increased education and competency. The specific skills identified by veteran nurses as an area of knowledge deficiency among student and new graduate nurses were those relating to intra-arterial catheter management. Resources, including checklists and videos, were determined the most appropriate method for providing this education. Content for these resources was derived from a literature review to determine the most evidence-based methods for completing intra-arterial catheter management in practice. These resources were reviewed by an expert panel of critical care nurses and included feedback from a student as the end user of the resources.
ContributorsPowers, Jessica L (Author) / O'Brien, Janet (Thesis director) / Barnum, Leslie (Committee member) / Edson College of Nursing and Health Innovation (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
133177-Thumbnail Image.png
Description
From 2007 to 2017, the state of California experienced two major droughts that required significant governmental action to decrease urban water demand. The purpose of this project is to isolate and explore the effects of these policy changes on water use during and after these droughts, and to see how

From 2007 to 2017, the state of California experienced two major droughts that required significant governmental action to decrease urban water demand. The purpose of this project is to isolate and explore the effects of these policy changes on water use during and after these droughts, and to see how these policies interact with hydroclimatic variability. As explanatory variables in multiple linear regression (MLR) models, water use policies were found to be significant at both the zip code and city levels. Policies that specifically target behavioral changes were significant mathematical drivers of water use in city-level models. Policy data was aggregated into a timeline and coded based on categories including user type, whether the policy was voluntary or mandatory, the targeted water use type, and whether the change in question concerns active or passive conservation. The analyzed policies include but are not limited to state drought declarations, regulatory municipal ordinances, and incentive programs for household appliances. Spatial averages of available hydroclimatic data have been computed and validated using inverse distance weighting methods. The data was aggregated at the zip code level to be comparable to the available water use data for use in MLR models. Factors already known to affect water use, such as temperature, precipitation, income, and water stress, were brought into the MLR models as explanatory variables. After controlling for these factors, the timeline policies were brought into the model as coded variables to test their effect on water demand during the years 2000-2017. Clearly identifying which policy traits are effective will inform future policymaking in cities aiming to conserve water. The findings suggest that drought-related policies impact per capita urban water use. The results of the city level MLR models indicate that implementation of mandatory policies that target water use behaviors effectively reduce water use. Temperature, income, unemployment, and the WaSSI were also observed to be mathematical drivers of water use. Interaction effects between policies and the WaSSI were statistically significant at both model scales.
ContributorsHjelmstad, Annika Margaret (Author) / Garcia, Margaret (Thesis director) / Larson, Kelli (Committee member) / Civil, Environmental and Sustainable Eng Program (Contributor, Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
132470-Thumbnail Image.png
Description
The purpose of this cross-sectional questionnaire is to explore women’s awareness about the lactation support amendments under the Affordable Care Act (ACA) and the support they received from their insurance companies and employers based on the act. Using convenience sampling and snowball sampling, participants were recruited to participate in a

The purpose of this cross-sectional questionnaire is to explore women’s awareness about the lactation support amendments under the Affordable Care Act (ACA) and the support they received from their insurance companies and employers based on the act. Using convenience sampling and snowball sampling, participants were recruited to participate in a survey through social media and flyers. The goals of this research are to examine the number of women who were 1) aware of the lactation support provisions under the ACA, 2) received breastfeeding support from insurance their health insurance with no cost sharing 3) received reasonable break time and a private space to express milk from their employers, and 4) if there were any challenges in receiving the support mandated under the ACA from their insurers and employers or lactation support in general. The results show that many women who responded to the survey were aware of the amendments under the ACA and many of those women did receive the benefits of the provisions. There were many common reasons for why women did not receive the support they desired. These underlying reasons prevent women from accessing lactation support and provide a challenging environment for women to continue breastfeeding their children.
ContributorsBaker, Michelle Jane (Author) / Bever, Jennie (Thesis director) / Kelly, Lesly (Committee member) / Edson College of Nursing and Health Innovation (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132915-Thumbnail Image.png
Description
With a rapidly decreasing amount of resources for construction, wood and bamboo have been suggested as renewable materials for increased use in the future to attain sustainability. Through a literature review, bamboo and wood growth, manufacturing and structural attributes were compared and then scored in a weighted matrix to determine

With a rapidly decreasing amount of resources for construction, wood and bamboo have been suggested as renewable materials for increased use in the future to attain sustainability. Through a literature review, bamboo and wood growth, manufacturing and structural attributes were compared and then scored in a weighted matrix to determine the option that shows the higher rate of sustainability. In regards to the growth phase, which includes water usage, land usage, growth time, bamboo and wood showed similar characteristics overall, with wood scoring 1.11% higher than bamboo. Manufacturing, which captures the extraction and milling processes, is experiencing use of wood at levels four times those of bamboo, as bamboo production has not reached the efficiency of wood within the United States. Structural use proved to display bamboo’s power, as it scored 30% higher than wood. Overall, bamboo received a score 15% greater than that of wood, identifying this fast growing plant as the comparatively more sustainable construction material.
ContributorsThies, Jett Martin (Author) / Ward, Kristen (Thesis director) / Halden, Rolf (Committee member) / Industrial, Systems & Operations Engineering Prgm (Contributor) / Civil, Environmental and Sustainable Eng Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133118-Thumbnail Image.png
Description
Current practice and a new technology for mitigating fugitive dust on construction sites are compared on the basis of economic, environmental and social impacts for this assessment. Fugitive dust can have serious health impacts, such as repertory illnesses and valley fever, on affected persons and is regulated by the Environmental

Current practice and a new technology for mitigating fugitive dust on construction sites are compared on the basis of economic, environmental and social impacts for this assessment. Fugitive dust can have serious health impacts, such as repertory illnesses and valley fever, on affected persons and is regulated by the Environmental Protection Agency and enforced by state and local agencies. Current practice consists of either relatively continuous application of potable water, a valuable resource, or application of expensive polymers, however, water application is considered the best available technology (BAT). The new technology, developed by the Center of Bio-medicated and Bio-inspired Geotechnics at Arizona State University, consists of application of Enzyme-Induced Carbonate Precipitate (EICP) to create an erosion-resistant crust. This crust is considered a "one and done" solution, until it is disturbed, however will last longer and stay more effective than quickly evaporating water. Future work will need to include how much disturbance is required to disturb the crust until ineffective towards mitigating fugitive dust. Results of the comparison show that a single EICP treatment produces 37 times less pollutants, uses 41 times less water and is 1.14 times cheaper than using water treatment to mitigate fugitive dust on a 7 acre site for 2 weeks (14 days). 14 days is the threshold at where EICP treatment becomes less expensive than water application for the purpose of mitigating fugitive dust. The EICP treatment benefits include lowering global warming inducing emissions, providing better air quality, becoming more cost effective, staying constantly effective to mitigate fugitive dust, and saving potable water.
ContributorsFabian, Aaron Jacob (Author) / Fox, Peter (Thesis director) / Kavazanjian, Edward (Thesis director) / Woolley, Miriam (Committee member) / Civil, Environmental and Sustainable Eng Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
133109-Thumbnail Image.png
Description
Expansive soils in the United States cause extensive damage to roadways, buildings, and various structures. There are several treatment or methods of mitigation for these expansive soils. These treatments can be physical or chemical treatments that serve to provide more suitable building qualities for foundations and roadways alike. The main

Expansive soils in the United States cause extensive damage to roadways, buildings, and various structures. There are several treatment or methods of mitigation for these expansive soils. These treatments can be physical or chemical treatments that serve to provide more suitable building qualities for foundations and roadways alike. The main issue with expansive soils, is the volumetric variations, which are known as swelling and consolidation. These behaviors of the soil are usually stabilized through the use of lime solution, Portland Cement Concrete, and a newer technology in chemical treatments, sodium silicate solutions. Although the various chemical treatments show benefits in certain areas, the most beneficial method for stabilization comes from the combination of the chemical treatments. Lime and Portland cement concrete are the most effective in terms of increasing compressive strength and reduction of swell potential. However, with the introduction of silicate into either treatment, the efficacy of the treatments increases by a large amount lending itself more as an additive for the former processes. Sodium silicate solution does not lend itself to effectively increase the compressive strength of expansive soils. The sodium silicate solution treatment needs extensive research and development to further improve the process. A proposed experiment plan has been recommended to develop trends of pH and temperature and its influence on the effectiveness of the treatment. Nonetheless, due to the high energy consumption of the other processes, sodium silicate solution may be a proper step in decreases the carbon footprint, that is currently being created by the synthesis of Portland Cement Concrete and lime.
ContributorsMeza, Magdaleno (Author) / Zapata, Claudia (Thesis director) / Kavazanjian, Edward (Committee member) / Civil, Environmental and Sustainable Eng Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
147902-Thumbnail Image.png
Description

Hispanic youth have the highest risk for obesity, making this population a key priority for early childhood interventions to prevent the development of adult obesity and its consequences. Involving parents in these interventions is essential to support positive long-term physical activity and nutrition habits. Interventions in the past have engaged

Hispanic youth have the highest risk for obesity, making this population a key priority for early childhood interventions to prevent the development of adult obesity and its consequences. Involving parents in these interventions is essential to support positive long-term physical activity and nutrition habits. Interventions in the past have engaged parents by providing information about nutrition and fruit and vegetable intake through written materials or text such as newsletters and text messages. The Sustainability via Active Garden Education (SAGE) intervention used gardening and interactive activities to teach preschool children ages 3-5 about healthy eating and physical activity. It aimed to increase physical activity and fruit and vegetable intake in preschool children as well as improve related parenting practices. The intervention utilized newsletters to engage parents by promoting opportunities to increase physical activity and fruit and vegetable intake for their children at home. The newsletters also encouraged parents to discuss what was learned during the SAGE lessons with their children. The purpose of this paper is to describe the content of the newsletters and determine the parent perception of the newsletters through parent survey responses. This can help inform future childhood obesity interventions and parent engagement.

ContributorsVi, Vinny (Author) / Lee, Rebecca (Thesis director) / Martinelli, Sarah (Committee member) / Edson College of Nursing and Health Innovation (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148468-Thumbnail Image.png
Description

Water heaters that are manufactured for swimming pools come in several forms, most of which require an electrical input for a source of power. Passive-circulation systems, however, require no electrical power input because fluid circulation occurs as a result of thermal gradients. In solar-based systems, thermal gradients are developed by

Water heaters that are manufactured for swimming pools come in several forms, most of which require an electrical input for a source of power. Passive-circulation systems, however, require no electrical power input because fluid circulation occurs as a result of thermal gradients. In solar-based systems, thermal gradients are developed by energy collected from sunlight. The combination of solar collection and passive circulation yields a system in which fluids, particularly water, are heated and circulated without need of assistance from external mechanical or electrical sources. The design of such a system was adapted from that of forced-circulation solar collector systems, as were the equations describing its thermodynamic properties. The design was developed based on such constraints as material corrosion resistance, overall system cost, and location-controlled size limitations. The thermodynamic description of the designed system was adjusted on the basis of the designed system’s physical aspects, such as the configuration and material of each component within the solar collector. Numerical analysis performed with the altered thermodynamic equations projected a total energy gain of 7.39 W between 9:00 and 10:00 A.M. and a total energy gain of 13.12 W between 4:00 and 5:00 P.M. The temperature of heated water exiting the collector system was projected to be 17.62°C in the morning and 25.56°C in the afternoon. The morning projection utilized an initial fluid temperature of 12°C and an ambient air temperature of 13°C, while the afternoon projection utilized an initial fluid temperature of 17°C and an ambient air temperature of 22°C. Field testing of the designed passive thermosyphon solar collector system was performed over a period of about one month with one temperature measurement taken at the collector outlet in the morning and another taken in the afternoon. For an ambient air temperature of 13°C, the linear regression developed from the morning dataset yielded an outlet water temperature of 20°C and that for the afternoon dataset yielded an outlet water temperature of 39°C for an ambient air temperature of 17°C. The percentage error between the projected and measured results was 13.51% for the morning period and 52.58% for the afternoon period. Numerical simulation and field data demonstrated that while the collector system operated successfully, its effects were limited to the volume of water immediately surrounding the outlet of the system; the rate of circulation within the system was too low for there to be a meaningful increase in the temperature of the water body at large. The stated results demonstrate that while the particular configuration of passive circulation solar collection technology developed in this instance is capable of transferring solar thermal energy to water without additional energy sources, significant modifications are necessary in order to improve the effectiveness of the technology. Such changes may come from improvements in material availability or alterations to the configuration of components of the collector system.

ContributorsZimmerman, Julia Elizabeth (Author) / Garcia, Margaret (Thesis director) / Phelan, Patrick (Committee member) / Civil, Environmental and Sustainable Eng Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148421-Thumbnail Image.png
Description

Circadian misalignments in terms of eat and sleep cycles, common occurrences among college students, are linked to adverse health outcomes. Time-restricted feeding, a form of intermittent fasting, may offer an exciting, non-pharmacologic approach to improve the health of this population by restricting eating to feeding windows that align with circadian

Circadian misalignments in terms of eat and sleep cycles, common occurrences among college students, are linked to adverse health outcomes. Time-restricted feeding, a form of intermittent fasting, may offer an exciting, non-pharmacologic approach to improve the health of this population by restricting eating to feeding windows that align with circadian biology. This study aims to fill a gap in the literature regarding the effect of early time-restricted feeding (eTRF) on college students, particularly in regard to diet quality, diet self-efficacy, and sleep quality. To test the hypothesis that eTRF would lead to an increase in all three variables, a 4-wk randomized-controlled, parallel arm trial was conducted. Thirty-five healthy college students were randomly assigned to one of two groups: the intervention group (TRF) was instructed to adhere to an 8-h feeding window aligned with the light cycle (9 am to 5 pm), and the control group (CON) was instructed to adhere to a 12-h feeding window typical of college students (10 am to 10pm). The eTRF diet was consumed ad libitum, and the participants were not instructed to avoid compensatory hyperphagia. The results showed a strong, reverse effect of eTRF on diet quality: fasting had a highly significant association with decreased diet quality. The results suggest that, under free-living conditions, college students practicing eTRF are more likely to compensate for prolonged fasting with unhealthy eating and snacking.

ContributorsGonzalez, Valeria Isabel (Author) / Johnston, Carol (Thesis director) / Hundley, Amanda (Committee member) / Edson College of Nursing and Health Innovation (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05