Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 5 of 5
Filtering by

Clear all filters

131510-Thumbnail Image.png
Description
Engineering is a multidisciplinary field with a variety of applications. However, since there are so many disciplines of engineering, it is often challenging to find the discipline that best suits an individual interested in engineering. Not knowing which area of engineering most aligns to one’s interests is challenging when deciding

Engineering is a multidisciplinary field with a variety of applications. However, since there are so many disciplines of engineering, it is often challenging to find the discipline that best suits an individual interested in engineering. Not knowing which area of engineering most aligns to one’s interests is challenging when deciding on a major and a career. With the development of the Engineering Interest Quiz (EIQ), the goal was to help individuals find the field of engineering that is most similar to their interests. Initially, an Engineering Faculty Survey (EFS) was created to gather information from engineering faculty at Arizona State University (ASU) and to determine keywords that describe each field of engineering. With this list of keywords, the EIQ was developed. Data from the EIQ compared the engineering students’ top three results for the best engineering discipline for them with their current engineering major of study. The data analysis showed that 70% of the respondents had their major listed as one of the top three results they were given and 30% of the respondents did not have their major listed. Of that 70%, 64% had their current major listed as the highest or tied for the highest percentage and 36% had their major listed as the second or third highest percentage. Furthermore, the EIQ data was compared between genders. Only 33% of the male students had their current major listed as their highest percentage, but 55% had their major as one of their top three results. Women had higher percentages with 63% listing their current major as their highest percentage and 81% listing it in the top three of their final results.
ContributorsWagner, Avery Rose (Co-author) / Lucca, Claudia (Co-author) / Taylor, David (Thesis director) / Miller, Cindy (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
Description

A survey was created to help gain some insight on the opinions of homeowners across the <br/>Phoenix Metro Area. This survey consisted of 7 questions relating to personal experiences and <br/>the homeowners’ opinions or concerns. The results of the survey showed that there are a few <br/>concerns surrounding solar energy

A survey was created to help gain some insight on the opinions of homeowners across the <br/>Phoenix Metro Area. This survey consisted of 7 questions relating to personal experiences and <br/>the homeowners’ opinions or concerns. The results of the survey showed that there are a few <br/>concerns surrounding solar energy with an emphasis on the cost of maintenance of panels and <br/>the payback period where the homeowners would see a return on their investment. Most of the <br/>homeowners answered that they do not use solar energy but have thought about using it for their <br/>main source of energy before. The homeowners in the survey also thought that solar energy was <br/>overall too expensive and that it would take a long time before they would see any payoff or <br/>savings from the solar panels. It was found that the payback period for panels is around 7 years <br/>and that depending on the size of the solar system installed or on the model used, solar panels <br/>cost much less than many people think. This was found by researching non-biased resources <br/>from government websites and from local energy companies’ websites. To combat the concerns <br/>found from the survey, an infographic was created to help inform the public about solar energy <br/>and allow the homeowners to make decisions that are well informed and not based on <br/>misinformation. The infographic included information related to the survey by explaining the <br/>survey and explaining topics that were of concern to the homeowners who took the survey. In <br/>addition, the infographic displayed information about solar energy and that the decision to use <br/>solar is ultimately up to the audience.

ContributorsGobiel, Erin (Author) / Taylor, David (Thesis director) / Koster, Auriane (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
132024-Thumbnail Image.png
Description
Pasta is a staple food for many people and understanding how the process of making it at a homemade level and industrial level should be examined. Pasta is a large and growing market due to growing populations and new products, therefore, researching the pasta has many benefits. The goal of

Pasta is a staple food for many people and understanding how the process of making it at a homemade level and industrial level should be examined. Pasta is a large and growing market due to growing populations and new products, therefore, researching the pasta has many benefits. The goal of the research is to determine a consistent way to make homemade pasta and compare it to the industrial method. The comparisons that will be examined are the costs and the process to make the pasta. From there it can be determined where homemade pasta can fit in the market. Through experimentation, an optimal ratio of 1.65 grams of flour to 1 gram of egg was found to create pasta dough that would consistently make pasta easy to work with. Different methods of storage were tested to find a viable method to store fresh pasta. It was found that storing the pasta in an enclosed bag with a condensed shape in the freezer was the best method because it created the most durable pasta out of all the trials and it could be cooked. The industrial method for making pasta differed in some aspects to the homemade pasta method. The biggest changes were the use of an extruder and a drying machine which makes it easier to mass produce uniform pasta. The cost per kilogram based off ingredient prices to make homemade pasta was 0.92 dollars while the industrial pasta cost 0.89 dollars per kilogram. The biggest changes in cost comes from the method of storage of homemade pasta. It was determined that following the drying process of the industrial method would be best because then the price difference is dependent on the price of ingredients. This led to multiple possibilities where homemade pasta could enter the market, for example, as a part of premade meals. Overall, it is possible to create a better quality pasta that can be supplied to a wide arrange of demographics.
ContributorsKupres, Matthew David (Author) / Taylor, David (Thesis director) / Schoepf, Jared (Committee member) / Economics Program in CLAS (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-12
132637-Thumbnail Image.png
Description
When it comes to the topic of chemical engineering, the general public has a set of neutral, if slightly uninformed perceptions that are largely tempered by the initial emotional responses to the field and its associated topics. These topics include the differentiation between chemical engineers and chemists, the importance and

When it comes to the topic of chemical engineering, the general public has a set of neutral, if slightly uninformed perceptions that are largely tempered by the initial emotional responses to the field and its associated topics. These topics include the differentiation between chemical engineers and chemists, the importance and potential danger of the products they produce, as well as the association of the subject matter with less than favorable secondary education experiences. This thesis consists of first assessing the opinions of a population meant to represent the general public regarding these subjects, then exploring the potential improvements of opinion and understanding that may be yielded from presenting the subject matter by way of a concise learning tool, such as a video. The results of this effort showed that factual understanding can be at least incrementally improved for 18% of participants through this method, while the effect on opinions can range from being improved to maintaining an enduring indifference, with an average of 17% of participants seeing improvement. Further iteration of this methodology with more consistent, impartial survey methods and refined questions could potentially yield more noteworthy improvements within the subjective domain, with the resultant learning tool of that iteration being applicable as not only an instrument of educating the general public, but also as a means to recruit potential students to the ASU chemical engineering degree program.
ContributorsJanovsky, Trey Patrick (Author) / Taylor, David (Thesis director) / Martin, Thomas (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
Description
This study was conducted to look for ways to improve engineering school in order to maximize student benefit. The results of the survey showed that additional communication and professional interaction lessons as well as more emphasis on software and programming languages would help prepare engineers for their careers.

This study was conducted to look for ways to improve engineering school in order to maximize student benefit. The results of the survey showed that additional communication and professional interaction lessons as well as more emphasis on software and programming languages would help prepare engineers for their careers. There was unanimous support of communication materials from survey respondents, with constructive confrontation and career path discussion receiving the most positive feedback. Due to the unanimous support of communications material, and the fact that short communications lessons could drive home key points without adding too much work to engineering students’ already busy schedules, two short lesson outlines for constructive confrontation and career path discussion were produced for this study.
ContributorsWolin, Nathan Maxwell (Author) / Taylor, David (Thesis director) / Holloway, Julianne (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-12