Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 5 of 5
Filtering by

Clear all filters

Description
Heterogeneous musculoskeletal tissues, such as the tendon-bone junction, is crucial for transferring mechanical loading during human physical activity. This region, also known as the enthesis, is composed of a complex extracellular matrix with gradient fiber orientations and chemistries. These different physical and chemical properties are crucial in providing the support

Heterogeneous musculoskeletal tissues, such as the tendon-bone junction, is crucial for transferring mechanical loading during human physical activity. This region, also known as the enthesis, is composed of a complex extracellular matrix with gradient fiber orientations and chemistries. These different physical and chemical properties are crucial in providing the support that these junctions need in handling mechanical loading of everyday activities. Currently, surgical restorative procedures for a torn enthesis entail a very invasive technique of suturing the torn tendon onto the bone. This results in improper reinjury. To circumvent this issue, one common strategy within tissue engineering is to introduce a biomaterial scaffold which acts as a template for the local damaged tissue. Electrospinning can be utilized to fabricate a fibrous material to recapitulate the structure of the extracellular matrix. Currently electrospinning techniques only allow the creation of scaffold that consists of only one orientation and material. In this work, we investigated a multicomponent, magnetically assisted, electrospinning technique to fabricate a fiber alignment and chemical gradient scaffold for tendon-bone repair
ContributorsLe, Minh (Author) / Holloway, Julianne (Thesis director) / Green, Matthew (Committee member) / W.P. Carey School of Business (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
131555-Thumbnail Image.png
Description
The tendon-bone junction is essential for allowing humans to transfer mechanical loads during activities. When injury does occur to this important area, current surgical techniques improperly bypass important physical and chemical gradients and do not restore proper function. It is essential to create tissue engineered scaffolds that create proper models

The tendon-bone junction is essential for allowing humans to transfer mechanical loads during activities. When injury does occur to this important area, current surgical techniques improperly bypass important physical and chemical gradients and do not restore proper function. It is essential to create tissue engineered scaffolds that create proper models for the region and induce healing responses for repair. To advance research into these scaffolds, electrospinning fibers and hydrogels made of norbornene functionalized hyaluronic acid (NorHA) were used to promote bone growth by adhering calcium to the material. To further improve calcium adherence, which is indicative of bone regions, a mineralization peptide was allowed to soak through the fibers. NorHA proved to be a suitable material for biomineralization experiments, showing slow calcium adherence within the first hour before accelerating in adherence over 24 hours in both fibers and hydrogels. When the mineralization peptide was implemented calcium adherence on fibers increased nearly eight times within the first 15 minutes of experimentation.
ContributorsCasey, Nathan Robert (Author) / Holloway, Julianne (Thesis director) / Tindell, Raymond (Committee member) / Fumasi, Fallon (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131471-Thumbnail Image.png
Description
Musculoskeletal heterogenous tissues are crucial for dissipating mechanical load during physical activity. Modern procedures to repair these tissues have proven inadequate to restore full functionality, thus there is a need for alternative reconstructive methods. Consequently, tissue engineered scaffolds can mimic the native structure of tissues and trigger a healing response.

Musculoskeletal heterogenous tissues are crucial for dissipating mechanical load during physical activity. Modern procedures to repair these tissues have proven inadequate to restore full functionality, thus there is a need for alternative reconstructive methods. Consequently, tissue engineered scaffolds can mimic the native structure of tissues and trigger a healing response. Heterogenous tissues like the tendon-bone junction consist of an interdigitated fiber alignment gradient from the tendon to the bone. It has been shown that electrospun fiber alignment gradients can be fabricated from the incorporation of magnetic fields. In this study, manipulating electrostatic and magnetic interactions from various electrospinning collector arrangements were investigated for creating an interdigitated fiber alignment gradient. The collector arrangement consisting of a magnet overlaid with razor cut aluminum foil proved to provide increased control over the interfacial shape. The rapid transition at the interfacial region was verified with brightfield microscopy revealing an interdigitated gradient from highly aligned fibers to unaligned fibers.
ContributorsBusselle, Lincoln Pierce (Author) / Holloway, Julianne (Thesis director) / Tindell, Raymond (Committee member) / Chemical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132727-Thumbnail Image.png
Description
The tendon-bone junction, also known as the enthesis, is crucial for properly transferring mechanical loadings during physical activity. During injury, current restoration procedures are insufficient for properly restoring tissue function. Thus, it is paramount to design alternative tissue engineered scaffolds to act as a template to the injured region and

The tendon-bone junction, also known as the enthesis, is crucial for properly transferring mechanical loadings during physical activity. During injury, current restoration procedures are insufficient for properly restoring tissue function. Thus, it is paramount to design alternative tissue engineered scaffolds to act as a template to the injured region and a regenerative response for tendon-bone repair. Thus, we utilized an offset electrospinning technique to fabricate a scaffold that mimics the native biochemical gradients present within the tendon-bone junction. To improve chemical gradient resolution, we implemented both insulating and conductive shields during offset electrospinning. Polycaprolactone fibers with either rhodamine or fluorescein were used to measure the scaffold fluorescent strength with distance. Without shields, at an offset of 4 cm, the chemical gradient resolution for rhodamine and fluorescein were 2.5 cm and 6.0 cm, respectively. During implementation of insulating shields, the gradient resolution for rhodamine and fluorescein improved to 2 cm and 0.5 cm, respectively. Lastly, grounded conductive shields improved gradient resolution for rhodamine and fluorescein to 1.0 cm and 1.5 cm, respectively.
ContributorsMiles, Corey (Author) / Holloway, Julianne (Thesis director) / Tindell, Raymond (Committee member) / Chemical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
Description
Patients with type 2 diabetes mellitus experience a slower healing process and poor osteointegration, making it difficult for them to heal properly after a bone fracture. This study aims to compare the proliferation and differentiation of human mesenchymal stromal cells at different glucose concentrations, as well as with an advanced

Patients with type 2 diabetes mellitus experience a slower healing process and poor osteointegration, making it difficult for them to heal properly after a bone fracture. This study aims to compare the proliferation and differentiation of human mesenchymal stromal cells at different glucose concentrations, as well as with an advanced glycated end-product (AGE) concentration, to mimic a healthy, prediabetic, and diabetic environment in an in vitro model over several experiments. Each experiment was composed of treatment groups in either growth or osteogenic media, with varying levels of glucose concentration or an advanced glycated end-product concentration. The treatment groups were cultured in 24 well plates over 28 days with staining of FITC-maleimide, DAPI, or alkaline phosphatase conducted at varying time points. The plates were imaged, then analyzed in ImageJ and GraphPad Prism. The study supports that at 28 days in culture, the more glucose added to osteogenic media treatment groups, the lower the nuclear count. At 14 days the same is true of growth media treatment groups, though the trend does not persist until 28 days. It does not seem that cell surface area of osteogenic groups, and growth media treatment groups was affected by glucose level. At 14 days, the alkaline phosphatase expression was unaffected by glucose level. However, at the 28 day time point the higher the glucose level of osteogenic treatment groups, the less expression of alkaline phosphatase. The effect of the added AGE concentration on hMSC osteogenesis was inconclusive. Overall, this study enhanced understanding of the role that glucose and AGEs play in the bone healing process for diabetic patients, allowing for future improvements of biomaterials and engineered tissue.
ContributorsMoya, Adriana Allyssa (Author) / Holloway, Julianne (Thesis director) / Fumasi, Fallon (Committee member) / Dean, W.P. Carey School of Business (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05