Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 10 of 11
Filtering by

Clear all filters

136180-Thumbnail Image.png
Description
Iodide-based ionic liquids have been widely employed as sources of iodide in electrolytes for applications utilizing the triiodide/iodide redox couple. While adding a low-viscosity solvent such as water to ionic liquids can greatly enhance their usefulness, mixtures of highly viscous iodide-containing ILs with water have never been studied. Thus, this

Iodide-based ionic liquids have been widely employed as sources of iodide in electrolytes for applications utilizing the triiodide/iodide redox couple. While adding a low-viscosity solvent such as water to ionic liquids can greatly enhance their usefulness, mixtures of highly viscous iodide-containing ILs with water have never been studied. Thus, this paper investigates, for the first time, mixtures of water and the ionic liquid 1-butyl-3-methylimidazolium iodide ([BMIM][I]) through a combined experimental and molecular dynamics study. The density, melting point, viscosity and conductivity of these mixtures were measured experimentally. The composition region below 50% water by mole was found to be dramatically different from the region above 50% water, with trends in density and melting point differing before and after that point. Water was found to have a profound effect on viscosity and conductivity of the IL, and the effect of hydrogen bonding was discussed. Molecular dynamics simulations representing the same mixture compositions were performed. Molecular ordering was observed, as were changes in this ordering corresponding to water content. Molecular ordering was related to the experimentally measured mixture properties, providing a possible explanation for the two distinct composition regions identified by experiment.
ContributorsNgan, Miranda L (Author) / Dai, Lenore (Thesis director) / Nofen, Elizabeth (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2015-05
133163-Thumbnail Image.png
Description
This thesis investigates an interpenetrating network of polyacrylamide and poly acrylic acid for use in a dynamic tactile display, which presents traditionally two-dimensional electronic screens as three-dimensional topographical models that can be experienced through touch. This kind of display would allow for greater access to traditionally visual information for the

This thesis investigates an interpenetrating network of polyacrylamide and poly acrylic acid for use in a dynamic tactile display, which presents traditionally two-dimensional electronic screens as three-dimensional topographical models that can be experienced through touch. This kind of display would allow for greater access to traditionally visual information for the visually impaired. This hydrogel demonstrates Upper Critical Solution Temperature (UCST) near room temperature which facilitates a swelling transition, characterized by a sharp increase in swelling as this temperature is surpassed. Through the utilization of light responsive additives, light can trigger this shift, as the additives harness visible light, convert it into heat to raise the gel’s temperature, and increase the volume of the gel. Light-responsive additives explored include chlorophyllin, gold nanoparticles, and carbon black. Each of these additives required unique synthesis planning and strategies in order to optimize the performance of the gels. Synthesized gels were characterized using thermal swelling tests, light response tests and compression tests to determine the material strength. The best performing additive was chlorophyllin and allowed for a 20.8%±4.5% percent weight increase upon exposure to light for 10 minutes. In addition to investigating light-responsive additives, modifications were pursued to alter the overall UCST behavior, such as the addition of sodium chloride. By adding sodium chloride into the hydrogel, the gel was found to have a wider transition. Overall, light-responsive behavior was developed, and further work can be done in improving the response time and degree of swelling in order to make this material more viable for use in a dynamic tactile display.
ContributorsSitterle, Philip Kerry (Author) / Dai, Lenore (Thesis director) / Xu, Yifei (Committee member) / School of Music (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
137284-Thumbnail Image.png
Description
Asymmetric polystyrene-gold composite particles are successfully synthesized alongside core-shell composite particles via a one-step Pickering emulsion polymerization method. Unlike core-shell particles which form in the droplet phase of a stabilized Pickering emulsion, asymmetric particles form via a seeded growth mechanism. These composite particles act as catalysts with higher recyclability than

Asymmetric polystyrene-gold composite particles are successfully synthesized alongside core-shell composite particles via a one-step Pickering emulsion polymerization method. Unlike core-shell particles which form in the droplet phase of a stabilized Pickering emulsion, asymmetric particles form via a seeded growth mechanism. These composite particles act as catalysts with higher recyclability than pure gold nanoparticles due to reduced agglomeration. With the addition of N-isopropylacrylamide (NIPAAM) monomers, temperature-responsive asymmetric and core-shell polystyrene/poly(N-isopropylacrylamide)-gold composite particles are also synthesized via Pickering emulsion polymerization. The asymmetric particles have a greater thermo-responsiveness than the core-shell particles due to the increased presence of NIPAAM monomers in the seeded-growth formation. Poly(N-isopropylacrylamide) (PNIPAM)-containing asymmetric particles have tunable rheological and optical properties due to their significant size decrease above the lower critical solution temperature (LCST).
ContributorsRabiah, Noelle Ibrahim (Author) / Dai, Lenore (Thesis director) / Torres, Cesar (Committee member) / Zhang, Mingmeng (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2014-05
134582-Thumbnail Image.png
Description
The purpose of this project is to investigate the swelling ratio exhibited due to photothermal effects of double network polyacrylamide poly(acrylic acid) hydrogels synthesized with carbon black as a light-sensitive chromophore. Optimal carbon black dispersion was achieved in solutions through sonication, using V9A32 carbon black, where dynamic light scattering recorded

The purpose of this project is to investigate the swelling ratio exhibited due to photothermal effects of double network polyacrylamide poly(acrylic acid) hydrogels synthesized with carbon black as a light-sensitive chromophore. Optimal carbon black dispersion was achieved in solutions through sonication, using V9A32 carbon black, where dynamic light scattering recorded particle diameters in the range of 195.0-375.8 nanometers for water/carbon black mixtures, 242.4-262.6 nanometers for monomer/carbon black mixtures without initiator, and 1109.3-1783.9 nanometers for monomer/carbon black mixtures including initiator. The double network polyacrylamide poly(acrylic acid) hydrogels with carbon black yielded weight increases of 0.126% and 6.043%, respectively, after 2 minutes and 10 minutes of being exposed to a light stimulus; compared to previous work which showed a double network polyacrylamide poly(acrylic acid) hydrogel with chlorophyllin yielded weight increases of 18.3% and 20.8%, respectively, after 2 minutes and 10 minutes of being exposed to a light stimulus, the carbon black resulted in a less robust response. Future work for application of the light-responsive hydrogels includes the development of a screen covering that will be made of the hydrogels. This covering is intended for use on LED screen displays, where a light change will result in a protrusion from the screen. The purpose behind this application is that technology users who are visually impaired can still determine what their LED device is trying to communicate with them.
ContributorsReimann, Morgan Elizabeth (Co-author) / Yifei, Xu (Co-author) / Dai, Lenore (Co-author, Thesis director) / Xu, Yifei (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
133145-Thumbnail Image.png
Description
This study aims to determine the feasibility of producing mechanophore-incorporated epoxy that can be healed. This was accomplished by grafting a synthesized mechanophore into tris(2-aminoethyl)amine to create a new epoxy hardener. Then this branched hardener was combined with a second hardener, diethylenetriamine (DETA). A proper ratio of the branched hardener

This study aims to determine the feasibility of producing mechanophore-incorporated epoxy that can be healed. This was accomplished by grafting a synthesized mechanophore into tris(2-aminoethyl)amine to create a new epoxy hardener. Then this branched hardener was combined with a second hardener, diethylenetriamine (DETA). A proper ratio of the branched hardener to the DETA will ensure that the created epoxy will retain the force responsive characteristics without a noticeable decline in both the physical and thermal properties. Furthermore, it was desired that the natural structure of the epoxy would be left in place, and there would only be enough branched hardener present to elicit a force response and provide the possibility for healing. The two hardeners would then be added to Diglycidyl Ether of Bisphenol F (DGEBPF), which is the epoxy resin. The mechanophore-incorporated epoxy was compared to a standard epoxy—just DETA and DGEBPF—and it was determined that the incorporation of the mechanophore led to an 8.2 degrees Celsius increase in glass transition temperature, and a 33.0% increase in cross link density. This justified the mechanophore-incorporated epoxy as a feasible alternative to the standard, as its primary thermal and physical properties were not only equal, but superior. Then samples of the mechanophore-incorporated epoxy were damaged with a 3% tensile strain. This would cause a cycloreversion in the central cyclobutane inside of the mechanophore. Then they were healed with UV light, which would redimerize the severed hardener moieties. The healed samples saw a 4.69% increase in cross-link density, demonstrating that healing was occurring.
ContributorsPauley, Bradley (Author) / Dai, Lenore (Thesis director) / Gunckel, Ryan (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
137708-Thumbnail Image.png
Description
Recently, a number of publications have suggested that ionic liquids (ILs) can absorb solid particles. This development may have implications in fields like oil sand processing, oil spill beach cleanup, and water treatment. In this Honors Thesis, computational investigation of this phenomenon is provided via molecular dynamics simulations. Two particle

Recently, a number of publications have suggested that ionic liquids (ILs) can absorb solid particles. This development may have implications in fields like oil sand processing, oil spill beach cleanup, and water treatment. In this Honors Thesis, computational investigation of this phenomenon is provided via molecular dynamics simulations. Two particle surface chemistries were investigated: (1) hydrocarbon-saturated and (2) silanol-saturated, representing hydrophobic and hydrophilic particles, respectively. Employing 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM]-[PF6]) as a model IL, these nanoparticles were allowed to equilibrate at the IL/water and IL/hexane interfaces to observe the interfacial self-assembled structures. At the IL/water interface, the hydrocarbon-based nanoparticles were nearly completely absorbed by the IL, while the silica nanoparticles maintained equal volume in both phases. At the IL/hexane interface, the hydrocarbon nanoparticles maintained minimal interactions with the IL, whereas the silica nanoparticles were nearly completely absorbed by it. Studies of these two types of nanoparticles immersed in the bulk IL indicate that the surface chemistry has a great effect on the corresponding IL liquid structure. These effects include layering of the ions, hydrogen bonding, and irreversible absorption of some ions to the silica nanoparticle surface. These effects are quantified with respect to each nanoparticle. The results suggest that ILs likely exhibit this absorption capability because they can form solvation layers with reduced dynamics around the nanoparticles.
ContributorsMachas, Michael Stafford (Author) / Dai, Lenore (Thesis director) / Lind, Mary Laura (Committee member) / Frost, Denzil (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2013-05
135805-Thumbnail Image.png
Description
The problem of catastrophic damage purveys in any material application, and minimizing its occurrence is paramount for general health and safety. We have successfully synthesized, characterized, and applied dimeric 9-anthracene carboxylic acid (Di-AC)-based mechanophores particles to form stress sensing epoxy matrix composites. As Di-AC had never been previously applied as

The problem of catastrophic damage purveys in any material application, and minimizing its occurrence is paramount for general health and safety. We have successfully synthesized, characterized, and applied dimeric 9-anthracene carboxylic acid (Di-AC)-based mechanophores particles to form stress sensing epoxy matrix composites. As Di-AC had never been previously applied as a mechanophore and thermosets are rarely studied in mechanochemistry, this created an alternative avenue for study in the field. Under an applied stress, the cyclooctane-rings in the Di-AC particles reverted back to their fluorescent anthracene form, which linearly enhanced the overall fluorescence of the composite in response to the applied strain. The fluorescent signal further allowed for stress sensing in the elastic region of the stress\u2014strain curve, which is considered to be a form of damage precursor detection. Overall, the incorporation of Di-AC to the epoxy matrix added much desired stress sensing and damage precursor detection capabilities with good retention of the material properties.
ContributorsWickham, Jason Alexander (Co-author) / Nofen, Elizabeth (Co-author, Committee member) / Koo, Bonsung (Co-author) / Chattopadhyay, Aditi (Co-author) / Dai, Lenore (Co-author, Thesis director) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135909-Thumbnail Image.png
Description
Poly(ionic liquid)s (PILs) with an intrinsically conducting pyrrole polymer (ICP) backbone were synthesized and utilized as novel dispersants of carbon nanotubes (CNTs) in various polar and nonpolar solvents. This is due to their highly tunable nature, in which the anions can be easily exchanged to form PILs of varying polarity

Poly(ionic liquid)s (PILs) with an intrinsically conducting pyrrole polymer (ICP) backbone were synthesized and utilized as novel dispersants of carbon nanotubes (CNTs) in various polar and nonpolar solvents. This is due to their highly tunable nature, in which the anions can be easily exchanged to form PILs of varying polarity but with the same polycation. These CNT dispersions were exceedingly stable over many months, and with the addition of hexane, Pickering emulsions with the PIL-stabilized CNTs at the droplet interfaces were formed. Depending on the hydrophobicity of the PIL, hexane-in-water and hexane-in-acetonitrile emulsions were formed, the latter marking the first non-aqueous stabilized-CNT emulsions and corresponding CNT-in-acetonitrile dispersion, further advancing the processability of CNTs. The PIL-stabilized CNT Pickering emulsion droplets generated hollow conductive particles by subsequent drying of the emulsions. With the emulsion templating, the hollow shells can be used as a payload carrier, depending on the solubility of the payload in the droplet phase of the emulsion. This was demonstrated with silicon nanoparticles, which have limited solubility in aqueous environments, but great scientific interest due to their potential electrochemical applications. Overall, this work explored a new class of efficient PIL-ICP hybrid stabilizers with tunable hydrophobicity, offering extended stability of carbon nanotube dispersions with novel applications in hollow particle formation via Pickering emulsion templating and in placing payloads into the shells.
ContributorsHom, Conrad Oliver (Co-author) / Chatterjee, Prithwish (Co-author) / Nofen, Elizabeth (Co-author, Committee member) / Xu, Wenwen (Co-author) / Jiang, Hanqing (Co-author) / Dai, Lenore (Co-author, Thesis director) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
135456-Thumbnail Image.png
Description
The ability to sense applied damage and correlate it with a measurable signal is extremely desirable in any material application to prevent catastrophic failure and the possible loss of use of the material or human injury. Mechanochemistry, in which mechanical forces induce chemical changes, can allow for targeted damage detection

The ability to sense applied damage and correlate it with a measurable signal is extremely desirable in any material application to prevent catastrophic failure and the possible loss of use of the material or human injury. Mechanochemistry, in which mechanical forces induce chemical changes, can allow for targeted damage detection by way of embedded mechanophore units, with certain mechanophore chemistries emitting a fluorescent signal in response an applied force. In this work, we successfully employed microparticles of the mechanophore dimeric 9-anthracene carboxylic acid (Di-AC) in a thermoset polyurethane matrix to study their application as universal stress-sensing fillers in network polymer matrix composites. Under a compressive force, there is bond breakage in the mechanically weak cyclooctane photodimers of Di-AC, such that there is reversion to the fluorescent anthracene-type monomers. This fluorescent emission was then correlated to the applied strain, and the precursors to damage were detected with a noticeable fluorescent signal change at an applied strain of only 2%. This early damage detection was additionally possible at very low particle loadings of 2.5 and 5 wt%, with the 5 wt% loading showing enhanced material properties compared to the 2.5 wt%, due to particle reinforcement in the composite. Overall, the synthesis of Di-AC as a stress-sensitive particle filler allows for facile addition of advanced functionality to these ubiquitous thermoset composites.
ContributorsDasgupta, Avi Ryan (Author) / Dai, Lenore (Thesis director) / Nofen, Elizabeth (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
131642-Thumbnail Image.png
Description
Ionic liquids are salts with low melting temperatures that maintain their liquid form below 100 °C, or even at ambient temperature. Ionic liquids are conductive, electrochemically stable, non-volatile, and have a low vapor pressure, making them a class of excellent candidate materials for electrolytes in energy storage, electrodeposition, batteries,

Ionic liquids are salts with low melting temperatures that maintain their liquid form below 100 °C, or even at ambient temperature. Ionic liquids are conductive, electrochemically stable, non-volatile, and have a low vapor pressure, making them a class of excellent candidate materials for electrolytes in energy storage, electrodeposition, batteries, fuel cells, and supercapacitors. Due to their multiple advantages, the use of ionic liquids on Earth has been widely studied; however, further research must be done before their implementation in space. The extreme temperatures encountered during space travel and extra-terrestrial deployment have the potential to greatly affect the liquid electrolyte system. Examples of low temperature planetary bodies are the permanently shadowed sections of the moon or icy surfaces of Jupiter’s moons. Recent studies have explored the limits of glass transition temperatures for ionic liquid systems. The project is centered around the development of an ionic liquid system for a molecular electronic transducer seismometer that would be deployed on the low temperature system of Europa. For this project, molecular dynamics simulations used input intermolecular and intramolecular parameters that then simulated molecular interactions. Molecular dynamics simulations are based around the statistical mechanics of chemistry and help calculate equilibrium properties that are not easily calculated by hand. These simulations will give insight into what interactions are significant inside a ionic liquid solution. The simulations aim to create an understanding how ionic liquid electrolyte systems function at a molecular level. With this knowledge one can tune their system and its contents to adapt the systems properties to fit all environments the seismometers will experience.
ContributorsDavis, Vincent Champneys (Author) / Dai, Lenore (Thesis director) / Gliege, Marisa (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05