Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 10 of 32
Filtering by

Clear all filters

135547-Thumbnail Image.png
Description
The Experimental Data Processing (EDP) software is a C++ GUI-based application to streamline the process of creating a model for structural systems based on experimental data. EDP is designed to process raw data, filter the data for noise and outliers, create a fitted model to describe that data, complete a

The Experimental Data Processing (EDP) software is a C++ GUI-based application to streamline the process of creating a model for structural systems based on experimental data. EDP is designed to process raw data, filter the data for noise and outliers, create a fitted model to describe that data, complete a probabilistic analysis to describe the variation between replicates of the experimental process, and analyze reliability of a structural system based on that model. In order to help design the EDP software to perform the full analysis, the probabilistic and regression modeling aspects of this analysis have been explored. The focus has been on creating and analyzing probabilistic models for the data, adding multivariate and nonparametric fits to raw data, and developing computational techniques that allow for these methods to be properly implemented within EDP. For creating a probabilistic model of replicate data, the normal, lognormal, gamma, Weibull, and generalized exponential distributions have been explored. Goodness-of-fit tests, including the chi-squared, Anderson-Darling, and Kolmogorov-Smirnoff tests, have been used in order to analyze the effectiveness of any of these probabilistic models in describing the variation of parameters between replicates of an experimental test. An example using Young's modulus data for a Kevlar-49 Swath stress-strain test was used in order to demonstrate how this analysis is performed within EDP. In order to implement the distributions, numerical solutions for the gamma, beta, and hypergeometric functions were implemented, along with an arbitrary precision library to store numbers that exceed the maximum size of double-precision floating point digits. To create a multivariate fit, the multilinear solution was created as the simplest solution to the multivariate regression problem. This solution was then extended to solve nonlinear problems that can be linearized into multiple separable terms. These problems were solved analytically with the closed-form solution for the multilinear regression, and then by using a QR decomposition to solve numerically while avoiding numerical instabilities associated with matrix inversion. For nonparametric regression, or smoothing, the loess method was developed as a robust technique for filtering noise while maintaining the general structure of the data points. The loess solution was created by addressing concerns associated with simpler smoothing methods, including the running mean, running line, and kernel smoothing techniques, and combining the ability of each of these methods to resolve those issues. The loess smoothing method involves weighting each point in a partition of the data set, and then adding either a line or a polynomial fit within that partition. Both linear and quadratic methods were applied to a carbon fiber compression test, showing that the quadratic model was more accurate but the linear model had a shape that was more effective for analyzing the experimental data. Finally, the EDP program itself was explored to consider its current functionalities for processing data, as described by shear tests on carbon fiber data, and the future functionalities to be developed. The probabilistic and raw data processing capabilities were demonstrated within EDP, and the multivariate and loess analysis was demonstrated using R. As the functionality and relevant considerations for these methods have been developed, the immediate goal is to finish implementing and integrating these additional features into a version of EDP that performs a full streamlined structural analysis on experimental data.
ContributorsMarkov, Elan Richard (Author) / Rajan, Subramaniam (Thesis director) / Khaled, Bilal (Committee member) / Chemical Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Ira A. Fulton School of Engineering (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135185-Thumbnail Image.png
Description
The wettability of powders is an important characteristic for both industry and academia and is often described by the powder’s contact angle with a certain liquid. While there exist many ways to measure contact angle, it is a portion of the powder technology field that is not fully understood and

The wettability of powders is an important characteristic for both industry and academia and is often described by the powder’s contact angle with a certain liquid. While there exist many ways to measure contact angle, it is a portion of the powder technology field that is not fully understood and requires more investigation and research. This study investigates two methods for measuring contact angle, the sessile drop method and the Washburn method, and looks to compare results to determine which method offers the most reliable data in terms of accuracy and repeatability. Two powders - microcrystalline cellulose and aluminum oxide - and three liquids - water, 50 cSt silicone oil, and 350 cSt silicone oil - were used to study the differences between the two measurement techniques as well as the effects of varying fluid viscosity on the measurements. It was found that the sessile drop method proved to be an ineffective method for measuring contact angle when liquid penetration into the powder occurred, as the contact angle changed while the drop penetrated. Initial results showed the contact angle for silicone oil on the powders to be greater than 90°, indicating nonwetting of the surface which was inconsistent with observations. The results from the Washburn method align better with other values in similar studies, but more study is needed to confirm the results gathered in this research.
ContributorsSmith, Bryan Alexander (Author) / Emady, Heather (Thesis director) / Rykaczewski, Konrad (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135197-Thumbnail Image.png
Description
With each new Disney princess being hailed as finally representing a strong, positive female role model, the images presented by older princesses come into question. This investigation delves into the messages put forth by the Disney princess films and the way in which these ideas are developed within each of

With each new Disney princess being hailed as finally representing a strong, positive female role model, the images presented by older princesses come into question. This investigation delves into the messages put forth by the Disney princess films and the way in which these ideas are developed within each of their movies. By defining the core of feminism to revolve around agency and the freedom of choice available to the women in the films, each princess' adherence to feminist values was analyzed. All current and expected Disney princesses were evaluated (Snow White, Cinderella, Aurora, Ariel, Belle, Jasmine, Pocahontas, Mulan, Tiana, Rapunzel, Merida, Anna, and Elsa). The princesses were split into five categories to offer comparison and conclusions between women with similar characteristics: the Traditionals, the Dreamers, the Adventurers, the Rebels, and the Non-Conformists. Major findings include the evolution of the marriage ideal presented by Disney, the issue between race and labor within the princess franchise, and the amount of agency each princess is allowed in her movie. Disney presents many stories where the individual wishes of a princess class with her society or community, but not all princesses are successful in going against their cultural values. A majority of the princesses do exercise their agency in their films, but this is done with varying degrees of freedom and choices available to them. Disney's representation of traditional love stories has slowly evolved, now allowing women to pursue other dreams concurrently with romance, or even dreams entirely devoid of love. Disney has also made an effort to branch out with princesses of color and from other cultures, yet these films often end up presenting a cultural critique as opposed to a feminist critique of gender roles. The franchise also seems to present labor as a form of oppression which white princesses must escape while princesses of color do not receive the same respite or salvation at the end of their films. White princesses end with a life of luxury and relaxation that isn't afforded to Disney's princesses of color. Though there is much room for improvement with future Disney princess films, the past princesses are not necessarily as "anti-feminist" as they have been portrayed. Each princess exhibits more autonomy and agency than the last, providing more paths and options for young girls to consider as they grow up watching these films.
ContributorsFerrero Mendoza, Vanessa Cristina (Author) / Dove-Viebahn, Aviva (Thesis director) / Kitch, Sally (Committee member) / Chemical Engineering Program (Contributor) / School of International Letters and Cultures (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135403-Thumbnail Image.png
Description
Hydrocephalus is a chronic medical condition characterized by the excessive accumulation of cerebrospinal fluid in the brain. It is estimated that 1-2 of every 1000 babies in the United States is born with congenital hydrocephalus, with many individuals acquiring hydrocephalus later in life through brain injury. Despite these alarming statistics,

Hydrocephalus is a chronic medical condition characterized by the excessive accumulation of cerebrospinal fluid in the brain. It is estimated that 1-2 of every 1000 babies in the United States is born with congenital hydrocephalus, with many individuals acquiring hydrocephalus later in life through brain injury. Despite these alarming statistics, current shunts for the treatment of hydrocephalus display operational failure rates as high as 40-50% within two years following implantation. Failure of current shunts is attributed to complexity of design, external implantation, and the requirement of multiple catheters. The presented hydrogel wafer check valve avoids all the debilitating features of current shunts, relying only on the swelling of hydrogel for operation, and is designed to directly replace failed arachnoid granulations- the brain’s natural cerebrospinal fluid drainage valves. The valve was validated via bench-top (1) hydrodynamic pressure-flow response characterizations, (2) transient response analysis, and (3) overtime performance response in brain-analogous conditions. In-vitro measurements display operation in range of natural CSF draining (cracking pressure, PT ~ 1–110 mmH2O and outflow hydraulic resistance, Rh ~ 24 – 152 mmH2O/mL/min), negligible reverse flow leakages (flow, QO > -10 µL/min), and demonstrate the valve’s operational reproducibility of this new valve as an implantable treatment.
ContributorsAmjad, Usamma Muhammad (Author) / Chae, Junseok (Thesis director) / Appel, Jennie (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135407-Thumbnail Image.png
Description
This research attempts to determine the most effective method of synthesizing a peptide such that it can be utilized as a targeting moiety for polymeric micelles. Two melanoma-associated peptides with high in vitro and in vivo binding affinity for TNF receptors have been identified and synthesized. Matrix Assisted Laser Desorption/Ionization-Time

This research attempts to determine the most effective method of synthesizing a peptide such that it can be utilized as a targeting moiety for polymeric micelles. Two melanoma-associated peptides with high in vitro and in vivo binding affinity for TNF receptors have been identified and synthesized. Matrix Assisted Laser Desorption/Ionization-Time of Flight Mass Spectrometry (MALDI-ToF) was used to help verify the structure of both peptides, which were purified using Reversed-Phase High Performance Liquid Chromatography (RP-HPLC). The next steps in the research are to attach the peptides to a micelle and determine their impact on micelle stability.
ContributorsMoe, Anna Marguerite (Author) / Green, Matthew (Thesis director) / Jones, Anne (Committee member) / Sullivan, Millicent (Committee member) / Chemical Engineering Program (Contributor) / School of International Letters and Cultures (Contributor) / Sandra Day O'Connor College of Law (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135341-Thumbnail Image.png
Description
The mechanisms of extracellular respiration in Geobacter sulfurreducens, commonly considered to be a model organism for anode respiration, are yet to be completely understood. The interplay between electron and proton transport especially could be a key to gaining further insights. One way to investigate the mechanisms of extracellular respiration under

The mechanisms of extracellular respiration in Geobacter sulfurreducens, commonly considered to be a model organism for anode respiration, are yet to be completely understood. The interplay between electron and proton transport especially could be a key to gaining further insights. One way to investigate the mechanisms of extracellular respiration under varying environmental conditions is by analyzing the electrochemical response of the biofilm with respect to pH, buffer concentrations, and acetate concentrations. I seek to increase the understanding of the electrochemical response of the G. sulfurreducens biofilm through electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) techniques in concert with chronoamperometry. I used Geobacter sulfurreducens PCA biofilms in single-chamber electrochemical cells (approximately 100 mL volume) with a small gold working electrode (3.14 mm2). I observed limitations in the initial methods used for media replacement. I tracked changes in the CV data, such as EKA (midpoint potential), as a function of pH and buffer concentration. The media replacement method developed demonstrates success in pH experiments that will be transferrable to other environmental conditions to study electron transport. The experiments revealed that the clarity of data collected is dependent on the quality of the biofilm. A high quality biofilm is characterized by a high current density and normal growth behavior. The general trends seen in these experiments are that as pH increases the potential decreases, and as buffer concentration increases the potential decreases and pH increases. Acetate-free conditions in the reactor were unable to be achieved as characterized by non-zero current densities in the acetate-free experiments.
ContributorsHolzer, Denton Gene (Author) / Torres, Cesar (Thesis director) / Popat, Sudeep (Committee member) / Yoho, Rachel (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135418-Thumbnail Image.png
Description
Solid oxide fuel cells have become a promising candidate in the development of high-density clean energy sources for the rapidly increasing demands in energy and global sustainability. In order to understand more about solid oxide fuel cells, the important step is to understand how to model heterogeneous materials. Heterogeneous materials

Solid oxide fuel cells have become a promising candidate in the development of high-density clean energy sources for the rapidly increasing demands in energy and global sustainability. In order to understand more about solid oxide fuel cells, the important step is to understand how to model heterogeneous materials. Heterogeneous materials are abundant in nature and also created in various processes. The diverse properties exhibited by these materials result from their complex microstructures, which also make it hard to model the material. Microstructure modeling and reconstruction on a meso-scale level is needed in order to produce heterogeneous models without having to shave and image every slice of the physical material, which is a destructive and irreversible process. Yeong and Torquato [1] introduced a stochastic optimization technique that enables the generation of a model of the material with the use of correlation functions. Spatial correlation functions of each of the various phases within the heterogeneous structure are collected from a two-dimensional micrograph representing a slice of a solid oxide fuel cell through computational means. The assumption is that two-dimensional images contain key structural information representative of the associated full three-dimensional microstructure. The collected spatial correlation functions, a combination of one-point and two-point correlation functions are then outputted and are representative of the material. In the reconstruction process, the characteristic two-point correlation functions is then inputted through a series of computational modeling codes and software to generate a three-dimensional visual model that is statistically similar to that of the original two-dimensional micrograph. Furthermore, parameters of temperature cooling stages and number of pixel exchanges per temperature stage are utilized and altered accordingly to observe which parameters has a higher impact on the reconstruction results. Stochastic optimization techniques to produce three-dimensional visual models from two-dimensional micrographs are therefore a statistically reliable method to understanding heterogeneous materials.
ContributorsPhan, Richard Dylan (Author) / Jiao, Yang (Thesis director) / Ren, Yi (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135435-Thumbnail Image.png
Description
In this project, biochemical characteristics of peptide binding agents, synthetic antibodies or synbodies, were examined with respect to the capture efficiency and specific binding ability to norovirus. Norovirus, although generally not a deadly pathogen, is the most common cause of acute gastroenteritis and outbreaks present a large social and financial

In this project, biochemical characteristics of peptide binding agents, synthetic antibodies or synbodies, were examined with respect to the capture efficiency and specific binding ability to norovirus. Norovirus, although generally not a deadly pathogen, is the most common cause of acute gastroenteritis and outbreaks present a large social and financial burden to the healthcare and food service industries. With Dr. Diehnelt's laboratory group, a platform has been developed that enables us to rapidly construct peptide-based affinity ligands that can be characterized for binding to norovirus. The design needed to display clear results, be simple to operate, and be inexpensive to produce and use. Four synbodies, originally engineered with a specificity to the GII.4 Minerva genotype were tested with different virus strains varying in similarity to the GII.4 Minerva between 43% and 95.4%. Initial assays utilized norovirus-like particles to qualitatively compare the capture efficiency of the different synbodies without utilizing limited resources. To quantify the amount of actual virus captured by the synbodies, western blots with RT-PCR and RT-qPCR were utilized. The results indicated the synbodies were able to enrich the dilute solutions of the different noroviruses utilizing a magnetic bead pull-down assay. The capture efficiencies of the synbodies were comparable to currently utilized binding agents such as aptamers and porcine gastric mucine magnetic beads. This thesis presents data collected over nearly two years of research at the Center for Innovations in Medicine at the Biodesign Institute located at Arizona State University.
ContributorsSlosky, Rachael Marie (Author) / Diehnelt, Chris (Thesis director) / Stafford, Phillip (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135442-Thumbnail Image.png
Description
Within recent years, metal-organic frameworks, or MOF’s, have gained a lot of attention in the materials research community. These micro-porous materials are constructed of a metal oxide core and organic linkers, and have a wide-variety of applications due to their extensive material characteristic possibilities. The focus of this study is

Within recent years, metal-organic frameworks, or MOF’s, have gained a lot of attention in the materials research community. These micro-porous materials are constructed of a metal oxide core and organic linkers, and have a wide-variety of applications due to their extensive material characteristic possibilities. The focus of this study is the MOF-5 material, specifically its chemical stability in air. The MOF-5 material has a large pore size of 8 Å, and aperture sizes of 15 and 12 Å. The pore size, pore functionality, and physically stable structure makes MOF-5 a desirable material. MOF-5 holds applications in gas/liquid separation, catalysis, and gas storage. The main problem with the MOF-5 material, however, is its instability in atmospheric air. This inherent instability is due to the water in air binding to the zinc-oxide core, effectively changing the material and its structure. Because of this material weakness, the MOF-5 material is difficult to be utilized in industrial applications. Through the research efforts proposed by this study, the stability of the MOF-5 powder and membrane were studied. MOF-5 powder and a MOF-5 membrane were synthesized and characterized using XRD analysis. In an attempt to improve the stability of MOF-5 in air, methyl groups were added to the organic linker in order to hinder the interaction of water with the Zn4O core. This was done by replacing the terepthalic acid organic linker with 2,5-dimethyl terephthalic acid in the powder and membrane synthesis steps. The methyl-modified MOF-5 powder was found to be stable after several days of exposure to air while the MOF-5 powder exhibited significant crystalline change. The methyl-modified membrane was found to be unstable when synthesized using the same procedure as the MOF-5 membrane.
ContributorsAnderson, Anthony David (Author) / Lin, Jerry Y.S. (Thesis director) / Ibrahim, Amr (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135635-Thumbnail Image.png
Description
Industry is changing. Businesses are plagued with problems of inefficiency, ineffectiveness, and waste. Many of these issues arise from some common mistakes within established management structures; these issues include lack of expertise in leadership positions, lack of unity across the organization, and imbalance within the business. Using Information Measurement Theory,

Industry is changing. Businesses are plagued with problems of inefficiency, ineffectiveness, and waste. Many of these issues arise from some common mistakes within established management structures; these issues include lack of expertise in leadership positions, lack of unity across the organization, and imbalance within the business. Using Information Measurement Theory, the Kashiwagi Solution Model, and leadership theories, this thesis presents a simple approach to creating a business structure through explaining the basic tenets of a successful modern business. It was determined that the first and most important task of a business is to set realistic long-term goals for the organization. This thesis proposes that the basic needs of a successful business also includes having the right individuals, team formation, positive leadership, and the proper alignment of resources. It was found that it is best to hire individuals that exhibit some Type A characteristics because those individuals are likely to effectively carry out the goals of the business. Forming these individuals into small teams increases their processing speeds and encourages a balance of accountability, innovative solutions, and a network of learning. Furthermore, consistent, positive leadership that lives the company culture is a key element to successfully maintaining the business vision and maximizing associate effectiveness. It was also determined that aligning the organization to work towards the business vision can be performed through implementing a flat structure, placing individuals in roles that maximize effectiveness, and establishing the right business goals so that there is a consistent business vision at all levels of the organization. This thesis also provides guidance on how to implement these tenets in a simple, dominant way. Ultimately, the four proposed tenets working in unison towards business goals can lead to a successful and adaptable modern business.
ContributorsMeade, Payton Drew (Author) / Kashiwagi, Dean (Thesis director) / Kashiwagi, Jacob (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05