Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 5 of 5
Filtering by

Clear all filters

135645-Thumbnail Image.png
Description
This thesis proposes the concept of soft robotic supernumerary limbs to assist the wearer in the execution of tasks, whether it be to share loads or replace an assistant. These controllable extra arms are made using soft robotics to reduce the weight and cost of the device, and are not

This thesis proposes the concept of soft robotic supernumerary limbs to assist the wearer in the execution of tasks, whether it be to share loads or replace an assistant. These controllable extra arms are made using soft robotics to reduce the weight and cost of the device, and are not limited in size and location to the user's arm as with exoskeletal devices. Soft robotics differ from traditional robotics in that they are made using soft materials such as silicone elastomers rather than hard materials such as metals or plastics. This thesis presents the design, fabrication, and testing of the arm, including the joints and the actuators to move them, as well as the design and fabrication of the human-body interface to unite man and machine. This prototype utilizes two types of pneumatically-driven actuators, pneumatic artificial muscles and fiber-reinforced actuators, to actuate the elbow and shoulder joints, respectively. The robotic limb is mounted at the waist on a backpack frame to avoid interfering with the wearer's biological arm. Through testing and evaluation, this prototype device proves the feasibility of soft supernumerary limbs, and opens up opportunities for further development into the field.
ContributorsOlson, Weston Roscoe (Author) / Polygerinos, Panagiotis (Thesis director) / Zhang, Wenlong (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
133610-Thumbnail Image.png
Description
Interplanetary space travel has seen a surge of interest in not only media but also within the academic field as well. No longer are we designing and investigating extravehicular activity (EVA) suits, scholars and researchers are also engineering the future suit to protect humans on the surfaces of Martian planets.

Interplanetary space travel has seen a surge of interest in not only media but also within the academic field as well. No longer are we designing and investigating extravehicular activity (EVA) suits, scholars and researchers are also engineering the future suit to protect humans on the surfaces of Martian planets. As we are progressing with technology capable of taking us even further distances than before imaginable, this thesis aims to produce an exosuit that will find a place between the planets and stars, by providing countermeasures to muscle and bone atrophy. This is achieved through the rapidly growing field of soft robotics and the technology within it. An analytical model governing torque production of an array of soft pneumatic actuators was created to provide resistive forces on the human joints. Thus, we can recreate and simulate a majority of the loads that would be experienced on earth, in microgravity. Where push-ups on earth require on average 30Nm of torque about the elbow joint, by donning this exosuit, the same forces can be experienced when pushing off of surfaces while navigating within the space capsule. It is ergonomic, low-cost, and most importantly lightweight. While weight is negligible in micro-G, the payloads required for transporting current exercising equipment are costly and would take up valuable cargo space that would otherwise be allocated to research related items or sustenance. Factor in the scaling of current "special space agent" missions times 20-50, and the problem is further exacerbated. Therefore, the proposed design has warranted potential for the short term need of Mars missions, and additionally satisfy the long-term goal of taking humanity to infinite and beyond.
ContributorsLam, Quoc Phuong (Author) / Polygerinoa, Panagiotis (Thesis director) / Zhang, Wenlong (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
131338-Thumbnail Image.png
Description
This paper describes the attempt of designing and building a two wheeled platform that is inherently unstable and discovering what tail design is suitable for stabilizing the platform. The platform is a 3D printed box that carries an Arduino, breadboard, MPU6050, a battery and a servo. This box is connected

This paper describes the attempt of designing and building a two wheeled platform that is inherently unstable and discovering what tail design is suitable for stabilizing the platform. The platform is a 3D printed box that carries an Arduino, breadboard, MPU6050, a battery and a servo. This box is connected to two continuous servo motors (one on each side) that are attached to wheels, the breadboard and Arduino are mounted on the inside and the MPU6050 is mounted on the back of the base. The MPU6050 collects the data. In the program, that data will be the position of the accelerometer’s x-axis and that data will be sent to the servo motor with the tail for the controls aspect.
ContributorsOnonye, Frank Nwachukwu (Author) / Aukes, Daniel (Thesis director) / Zhang, Wenlong (Committee member) / Engineering Programs (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131375-Thumbnail Image.png
Description
In this article we present a program that is supplemental to a low-cost force-sensing quadrupedal laminate robot platform previously developed by Ben Shuch. The robot has four legs with two degrees of freedom apiece. Each leg is a four-bar mechanism controlled by two servo motors. The program that has been

In this article we present a program that is supplemental to a low-cost force-sensing quadrupedal laminate robot platform previously developed by Ben Shuch. The robot has four legs with two degrees of freedom apiece. Each leg is a four-bar mechanism controlled by two servo motors. The program that has been developed allows the user to predict the force distribution of the robot based on its configuration and the angle of the ground it is standing on. Through the use of this program, future students working on research involving this robot will be able to calculate the force distribution of the robot based on its configuration and generate ideal configurations of the robot using data gathered from force sensors attached to its feet.
ContributorsRoush, Dante Alexander (Author) / Aukes, Daniel M. (Thesis director) / Zhang, Wenlong (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132656-Thumbnail Image.png
Description
For my thesis I worked in ASU’s Bio-Inspired Mechatronics lab on a project lead by PhD student Pham H. Nguyen (Berm) to develop an assistive soft robotic supernumerary limb. I contributed to the design and evaluation of two prototypes: the silicon based Soft Poly Limb (SPL) and one bladder-based fabric

For my thesis I worked in ASU’s Bio-Inspired Mechatronics lab on a project lead by PhD student Pham H. Nguyen (Berm) to develop an assistive soft robotic supernumerary limb. I contributed to the design and evaluation of two prototypes: the silicon based Soft Poly Limb (SPL) and one bladder-based fabric arm, the fabric Soft Poly Limb (fSPL). For both arms I was responsible for the design of 3D printed components (molds, end caps, etc.) as well as the evaluation of the completed prototypes by comparing the actual performance of the arms to the finite element predictions. I contributed to the writing of two published papers describing the design and evaluation of the two arms. After the completion of the fSPL I attempted to create a quasi-static model of the actuators driving the fSPL.
ContributorsSparks, Curtis Mitchell (Author) / Sugar, Thomas (Thesis director) / Zhang, Wenlong (Committee member) / Engineering Programs (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05