Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 6 of 6
Description
Laminate devices have the potential to lower the cost and complexity of robots. Taking advantage of laminate materials' flexibility, a high-performance jumping platform has been developed with the goal of optimizing jump ground clearance. Four simulations are compared in order to understand which dynamic model elements (leg flexibility, motor dynamics,

Laminate devices have the potential to lower the cost and complexity of robots. Taking advantage of laminate materials' flexibility, a high-performance jumping platform has been developed with the goal of optimizing jump ground clearance. Four simulations are compared in order to understand which dynamic model elements (leg flexibility, motor dynamics, contact, joint damping, etc.) must be included to accurately model jumping performance. The resulting simulations have been validated with experimental data gathered from a small set of physical leg prototypes spanning design considerations such as gear ratio and leg length, and one in particular was selected for the fidelity of performance trends against experimental results. This simulation has subsequently been used to predict the performance of new leg designs outside the initial design set. The design predicted to achieve the highest jump ground clearance was then built and tested as a demonstration of the usefulness of this simulation.
ContributorsKnaup, Jacob W (Author) / Aukes, Daniel (Thesis director) / Sugar, Thomas (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
Description

The creative project was to create a working prototype kit that can teach multiple lessons of the curriculum that the schools or individual families could purchase. The curriculum would be centered on the engineering and science curriculum that is introduced from fourth to sixth grade classes. By creating an interactive

The creative project was to create a working prototype kit that can teach multiple lessons of the curriculum that the schools or individual families could purchase. The curriculum would be centered on the engineering and science curriculum that is introduced from fourth to sixth grade classes. By creating an interactive kit with curriculum that the students could individualize and use for multiple lessons, the goal is to get them more engaged in the material. The project would consist of a week-long project kit that will introduce different engineering topics for three to four days of the week with mini projects and a final project that pieces together the topics they learned. The biggest take away from the project was how to best get user feedback and fast track the IRB process. The IRB process for a project focusing on minors and teachers will cause some catches in the process. Included is a discussion on the IRB process for a project like this and how to best go through or avoid IRB to ensure the project can progress, while still gathering valuable information.

ContributorsHeun, Jade (Author) / Aukes, Daniel (Thesis director) / Sugar, Thomas (Committee member) / Barrett, The Honors College (Contributor) / Engineering Programs (Contributor)
Created2022-05
165646-Thumbnail Image.png
ContributorsHeun, Jade (Author) / Aukes, Daniel (Thesis director) / Sugar, Thomas (Committee member) / Barrett, The Honors College (Contributor) / Engineering Programs (Contributor)
Created2022-05
165647-Thumbnail Image.png
ContributorsHeun, Jade (Author) / Aukes, Daniel (Thesis director) / Sugar, Thomas (Committee member) / Barrett, The Honors College (Contributor) / Engineering Programs (Contributor)
Created2022-05
165648-Thumbnail Image.png
ContributorsHeun, Jade (Author) / Aukes, Daniel (Thesis director) / Sugar, Thomas (Committee member) / Barrett, The Honors College (Contributor) / Engineering Programs (Contributor)
Created2022-05
165649-Thumbnail Image.png
ContributorsHeun, Jade (Author) / Aukes, Daniel (Thesis director) / Sugar, Thomas (Committee member) / Barrett, The Honors College (Contributor) / Engineering Programs (Contributor)
Created2022-05