Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

164685-Thumbnail Image.png
Description

As the search for life in our universe grows, it is important to not only locate planets outside of our solar system, but also to work towards the ability to understand and characterize their nature. Many current research endeavors focus on the discovery of exoplanets throughout the surrounding universe; however,

As the search for life in our universe grows, it is important to not only locate planets outside of our solar system, but also to work towards the ability to understand and characterize their nature. Many current research endeavors focus on the discovery of exoplanets throughout the surrounding universe; however, we still know very little about the characteristics of these exoplanets themselves, particularly their atmospheres. Observatories, such as the Hubble Space Telescope and the Spitzer Space Telescope, have made some of the first observations which revealed information about the atmospheres of exoplanets but have yet to acquire complete and detailed characterizations of exoplanet atmospheres. The EXoplanet Climate Infrared TElescope (EXCITE) is a mission specifically designed to target key information about the atmospheres of exoplanets - including the global and spatially resolved energy budget, chemical bulk-compositions, vertical temperature profiles and circulation patterns across the surface, energy distribution efficiency as a function of equilibrium temperatures, and cloud formation and distribution - in order to generate dynamic and detailed atmospheric characterizations. EXCITE will use phase-resolved transit spectroscopy in the 1-4 micron wavelength range to accomplish these science goals, so it is important that the EXCITE spectrograph system is designed and tested to meet these observational requirements. For my thesis, I present my research on the EXCITE mission science goals and the design of the EXCITE spectrograph system to meet these goals, along with the work I have done in the beginning stages of testing the EXCITE spectrograph system in the lab. The primary result of my research work is the preparation of a simple optics setup in the lab to prepare a laser light source for use in the EXCITE spectrograph system - comparable to the preparation of incoming light by the EXCITE telescope system - which successfully yields an F# = 12.9 and a spot size of s = 39 ± 7 microns. These results meet the expectations of the system and convey appropriate preparation of a light source to begin the assembly and testing of the EXCITE spectrograph optics in the lab.

ContributorsHorvath, Zoe (Author) / Butler, Nathaniel (Thesis director) / Line, Michael (Committee member) / Scowen, Paul (Committee member) / Barrett, The Honors College (Contributor) / School of Earth and Space Exploration (Contributor) / Department of Physics (Contributor)
Created2022-05
132732-Thumbnail Image.png
Description
At the start of this honors thesis project, a new telescope called the deca-degree optical transient imager (DDOTI) needed assistance to help it gather photometric data about Gamma Ray Bursts (GRBs). Contributions to help DDOTI produce scientifically ready reductions will be discussed.
First, performance assessment tests were run in order to

At the start of this honors thesis project, a new telescope called the deca-degree optical transient imager (DDOTI) needed assistance to help it gather photometric data about Gamma Ray Bursts (GRBs). Contributions to help DDOTI produce scientifically ready reductions will be discussed.
First, performance assessment tests were run in order to prevent data backlog and optimize the way in which DDOTI reduces the data it collects. The results of these tests yielded a general framework regarding how DDOTI should reduce collected images depending on how many computer cores can be used. These tests also indicated that DDOTI’s alignment portion of the reduction code (ddoti_align) should be completed after every image is collected, while the other parts of the reduction software (ddoti_stack, ddoti_phot, ddoti_summary) should be run after every four images are collected.
Second, reductions created by DDOTI were inspected to determine if the telescope’s reduction software was working properly. Reductions were observed and indicated that two reduction related problems needed to be corrected by the research team before DDOTI would be ready for future scientific work. The first identified problem was that DDOTI’s reduction code was not properly correcting optical distortions for one of DDOTI’s two functional cameras. The second problem was that the reduction code was not correcting for atmospheric refraction. As a result, below zenith distances of approximately sixty degrees, ddoti_align was unable to align detected sources to their catalogue equivalents due to their distorted positions.
Third, code manuals were produced in both English and Spanish so that English and Spanish-speaking researchers working on DDOTI could understand how its reductions software reduces images. Functional flow chart diagrams were also produced only in English to graphically describe the flow of information through DDOTI’s reduction software.
These three contributions helped DDOTI to more accurately be able to observe GRBs. DDOTI’s improved reduction abilities were confirmed by a produced report about GRB 190129B after a 10-hour observation, and by the fact that DDOTI could accurately observed asteroid fields. In addition, code manuals and functional flow chart diagrams were all produced by the end of this project.
ContributorsWolfram, Tanner Reid (Author) / Butler, Nathaniel (Thesis director) / Scowen, Paul (Committee member) / Vargas, Daniel (Committee member) / Department of Physics (Contributor) / School of International Letters and Cultures (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05