Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 4 of 4
Description

Alzheimer’s disease (AD) and Frontotemporal lobe dementia (FTLD) are types of dementia that have distinct differences. To help identify some of the neural differences, researchers use diffusion tensor imaging (DTI) techniques to assist with diagnosing patients and track progression over time. The major objective of this experiment was to use

Alzheimer’s disease (AD) and Frontotemporal lobe dementia (FTLD) are types of dementia that have distinct differences. To help identify some of the neural differences, researchers use diffusion tensor imaging (DTI) techniques to assist with diagnosing patients and track progression over time. The major objective of this experiment was to use the advanced diffusion tensor imaging techniques of Fractional Anisotropy (FA) and Free water (FW) to help differentiate between AD and FTLD neurodegeneration. The scope of this experiment was to examine literature research on AD and FTLD by gathering the mean values of (FA) and (FW) to identify diffusivity susceptibility in the specific brain regions of the Uncinate Fasciculus (UF) and the Superior Temporal Gyrus (STG). The methods used were the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and the Frontotemporal Lobe Degenerative Neuroimaging Initiative (FTLD): These data repositories provide researchers with study data to define the progression of AD and FTLD. Next, an imaging analysis was used to calculate the average FA and FW through each slice of the brain regions UF and STG in standard space. Then FreeSurfer segmented Superior Temporal Gyrus and the JHU ICBM Atlas of the Uncinate Fasciculus were used as a set of tools for analysis and visualization of structural and functional brain imaging data for processing the cross-sectional and longitudinal data. We calculated 95% Confidence intervals for mean FW and FA at each slice and direction across 21 participants within each dementia group to determine regions of overlap and nonoverlap. Results indicated that for the FA and FW graphs in the x and z directions among UF and STG regions, there were more non-overlap regions between the AD and FTLD in the FW graphs across x and z-directions in particular the UF. Our results indicate that there may be concomitant decline in white and gray matter regions in dementia, and FW may be more sensitive detecting AD related neurodegeneration in the UF and STG regions.

ContributorsMalone, Joshua (Author) / Ofori, Edward (Thesis director) / Schaefer, Sydney (Committee member) / Barrett, The Honors College (Contributor) / College of Health Solutions (Contributor)
Created2022-05
165166-Thumbnail Image.png
ContributorsMalone, Joshua (Author) / Ofori, Edward (Thesis director) / Schaefer, Sydney (Committee member) / Barrett, The Honors College (Contributor) / College of Health Solutions (Contributor)
Created2022-05
165167-Thumbnail Image.png
ContributorsMalone, Joshua (Author) / Ofori, Edward (Thesis director) / Schaefer, Sydney (Committee member) / Barrett, The Honors College (Contributor) / College of Health Solutions (Contributor)
Created2022-05
164188-Thumbnail Image.png
Description

My honors thesis focuses on the technological aspects and the legal impacts of prosthetics and advanced prosthetics. There is a lot of case law dealing with early prosthetics when it comes to worker’s compensation, airport security, prisons and sports. However, there has been little case law that has dealt with

My honors thesis focuses on the technological aspects and the legal impacts of prosthetics and advanced prosthetics. There is a lot of case law dealing with early prosthetics when it comes to worker’s compensation, airport security, prisons and sports. However, there has been little case law that has dealt with advanced prosthetics. As prosthetic limbs become more technologically advanced and intertwined with one’s identity, it is crucial that laws are made to draw a new line between person and property. The innovation of prosthetic limbs has just begun and will surely face setbacks along the way, but the benefits will be worth it once the law catches up with the rapidly advancing technology.

ContributorsRogers, Madison (Author) / Marchant, Gary (Thesis director) / Schaefer, Sydney (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2022-05