Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 4 of 4
148329-Thumbnail Image.png
Description

Olfactory discrimination tasks can provide useful information about how olfaction may have evolved by demonstrating which types of compounds animals will detect and respond to. Ants discriminate between nestmates and non-nestmates by using olfaction to detect the cuticular hydrocarbons on other ants, and Camponotus floridanus have particularly clear and aggressive

Olfactory discrimination tasks can provide useful information about how olfaction may have evolved by demonstrating which types of compounds animals will detect and respond to. Ants discriminate between nestmates and non-nestmates by using olfaction to detect the cuticular hydrocarbons on other ants, and Camponotus floridanus have particularly clear and aggressive responses to non-nestmates. A new method of adding hydrocarbons to ants, the “Snow Globe” method was further optimized and tested on C. floridanus. It involves adding hydrocarbons and a solvent to a vial of water, vortexing it, suspending hydrocarbon droplets throughout the solution, and then dipping a narcotized ant in. It is hoped this method can evenly coat ants in hydrocarbon. Ants were treated with heptacosane (C27), nonacosane (C29), hentriacontane (C31), a mixture of C27/C29/C31, 2-methyltriacontane (2MeC30), S-3-methylhentriacontane (SMeC31), and R-3-methylhentriacontane (RMeC31). These were chosen to see how ants reacted in a nestmate recognition context to methyl-branched hydrocarbons, R and S enantiomers, and to multiple added alkanes. Behavior assays were performed on treated ants, as well as two untreated controls, a foreign ant and a nestmate ant. There were 15 replicates of each condition, using 15 different queenright colonies. The Snow Globe method successfully transfers hydrocarbons, as confirmed by solid phase microextraction (SPME) done on treated ants, and the behavior assay data shows the foreign control, SMeC31, and the mixture of C27/29/31 were all statistically significant in their differences from the native control. The multiple alkane mixture received a significant response while single alkanes did not, which supports the idea that larger variations in hydrocarbon profile are needed for an ant to be perceived as foreign. The response to SMeC31 shows C. floridanus can respond during nestmate recognition to hydrocarbons that are not naturally occurring, and it indicates the nestmate recognition process may simply be responding to any compounds not found in the colony profile and rather than detecting particular foreign compounds.

ContributorsNoss, Serena Marie (Author) / Liebig, Juergen (Thesis director) / Pratt, Stephen (Committee member) / Haight, Kevin (Committee member) / School of Life Sciences (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
130932-Thumbnail Image.png
Description
Across the animal kingdom, communication serves a vital purpose. The transfer of information between and among species is often paramount to many behaviors including mating, collaboration, and defense. While research has provided tremendous insight into animal communication and interaction, there is still much that we have yet to understand. Due

Across the animal kingdom, communication serves a vital purpose. The transfer of information between and among species is often paramount to many behaviors including mating, collaboration, and defense. While research has provided tremendous insight into animal communication and interaction, there is still much that we have yet to understand. Due to their reliance on interactions that maximize efficiency within their complicated colony structure and array of member roles, eusocial insects serve as an excellent model for animal communication. Among eusocial insects, ants are some of the most heavily researched, with a tremendous amount of literature focused on their cuticular hydrocarbons. Along with serving as a waterproofing agent, cuticular hydrocarbons also play a major role in recognition and communication in these insects. By studying the importance of hydrocarbons in ant social structure, their tremendously specialized olfactory system, and the use of learning assays in its study, parallels between communication in ants and other animals are revealed, demonstrating how ants serve as a relevant model for animal communication as a whole.
ContributorsSpirek, Benton Forest Ensminger (Author) / Liebig, Juergen (Thesis director) / Pratt, Stephen (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-12
Description
The desert ant, Novomessor albisetosus, is an ideal model system for studying collective transport in ants and self-organized cooperation in natural systems. Small teams collect and stabilize around objects encountered by these colonies in the field, and the teams carry them in straight paths at a regulated velocity back to

The desert ant, Novomessor albisetosus, is an ideal model system for studying collective transport in ants and self-organized cooperation in natural systems. Small teams collect and stabilize around objects encountered by these colonies in the field, and the teams carry them in straight paths at a regulated velocity back to nearby nest entrances. The puzzling finding that teams are slower than individuals contrasts other cases of cooperative transport in ants. The statistical distribution of speeds has been found to be consistent with the slowest-ant model, but the key assumption that individual ants consistently vary in speed has not been tested. To test this, information is needed about the natural distribution of individual ant speeds in colonies and whether some ants are intrinsically slow or fast. To investigate the natural, individual-level variation in ants carrying loads, data were collected on single workers carrying fig seeds in arenas separated from other workers. Using three separate, small arenas, the instantaneous speed of each seed-laden worker was recorded when she picked up a fig seed and transported within the arena. Instantaneous speeds were measured by dividing the distance traveled in each frame by how much time had passed.
There were nine ants who transported a fig seed numerous times and there was a clear variation in their average instantaneous speed. Within an ant, slightly varying speeds were found as well, but within-ant speeds were not as varied as speed across ants. These results support the conclusion that there is intrinsic variation in the speed of an individual which supports the slowest-ant model, but this may require further experimentation to test thoroughly. This information aids in the understanding of the natural variation of ants cooperatively carrying larger loads in groups.
ContributorsCastro, Samantha (Author) / Pavlic, Theodore (Thesis director) / Pratt, Stephen (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-12
Description
This paper is a survey of the Oribatid mites of the North American deserts. It contains four chapters. Chapter 1 gives an overview of the biology of mites and oribatids. I talk about their phylogeny, body parts, food sources, habitats, and lifecycle. In Chapter 2, I identify a group of

This paper is a survey of the Oribatid mites of the North American deserts. It contains four chapters. Chapter 1 gives an overview of the biology of mites and oribatids. I talk about their phylogeny, body parts, food sources, habitats, and lifecycle. In Chapter 2, I identify a group of 59 oribatid species with cosmopolitan or semi-cosmopolitan distributions and examine how the number of biogeographical regions where a species has been detected relates to body length and to reproductive mode (sexual or parthenogenetic). I also present an illustrated guide (File S1) to 58 of these species for use in identifying cosmopolitan species in oribatid surveys. Chapter 3 describes the current state of knowledge of oribatid diversity in the southwestern US and northern Mexico. In total, I was able to find records for 340 oribatid species from this region in the published literature and museum collections. However, we can see that some states, such as Arizona and Sonora, do not have many published records and that further studies are needed to more fully characterize oribatid diversity within this region. Finally, Chapter 4 describes some preliminary efforts to culture oribatid mites sampled from oak woodland in the Santa Rita Mountains of southeast Arizona. Although this work was interrupted by the COVID-19 crisis, I was able to keep three oribatid species in captivity long enough for them to lay eggs and for some of these eggs to hatch.
ContributorsZhao, Erxuan (Author) / Taylor, Jay (Thesis director) / Pratt, Stephen (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-12