Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 3 of 3
Filtering by

Clear all filters

132255-Thumbnail Image.png
Description
This thesis research project seeks to provide an investigation to find the most appropriate organogel serving as a lithium ion battery separator that is compatible with stretchable electronics. Separators play a key role in all batteries. Their main function is to keep the positive and negative electrodes apart to prevent

This thesis research project seeks to provide an investigation to find the most appropriate organogel serving as a lithium ion battery separator that is compatible with stretchable electronics. Separators play a key role in all batteries. Their main function is to keep the positive and negative electrodes apart to prevent electrical short circuits and at the same time allow rapid transport of ionic charge carriers that are needed to complete the circuit during the passage of current in an electrochemical cell [1].Li-ion batteries have become important in the field of electronic industry due to their advantages like compactness, lightweight, high operational voltage and providing highest energy density. Typical Li-ion battery has a cathode (LiCoO2, LiMnO2, LiFePO4 etc.), an anode (graphite, graphene, carbon nanotubes, carbon nanofibers, lithium titanium oxides etc.) and a separator [1]. The separator provides an electrical insulation between anode and cathode and allows ion transfer during operation. It also plays a significant role in determining battery performance. The performance of the Li-ion battery separator is determined by several factors such as permeability, porosity, electrolyte uptake capacity, mechanical, thermal and chemical stability. Several commercially available polymers have been used as separators and the most common polymers are poly(ethylene), poly(propylene), poly (ethylene oxide), poly(acrylonitrile), poly (methyl methacrylate) and poly (vinylidene fluoride) (PVDF) [3]. In this project, organogels were chosen because of their flexible, semi-permeable and reliable bendable characteristics which becomes useful in stretchable batteries. The first part is to use Polydimethylsiloxane (PDMS) which belongs to a group of polymeric organosilicon compounds that are commonly referred to as silicones, then mixed with hexane and sucrose solvents to make the required organogel. Different organogels from PDMS and Dragon skin in different amounts and conditions were created and tested to see what works best in stretchable lithium batteries, thus improving the battery’s efficiency and life cycle. Ion conductivity values were obtained after running the Electrochemical Impedance Spectroscopy Test. Graphs produced after this test proved that the most effective combination to use was at a porosity of 0.8, at a ratio of Sucrose: PDMS wt Ratio of 5: 0.764 respectively. The future endeavors of this project will involve working with reduced cell thickness so as to reduce the overall distance traveled by the ions, which also reduces the overall cost of making each separator.
ContributorsMatsika, Clive (Author) / Jiang, Hanqing (Thesis director) / Phelan, Patrick (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
135140-Thumbnail Image.png
Description
Concentrated Solar Power and Thermal Energy Storage are two technologies that are currently being explored as environmentally friendly methods of energy generation. The two technologies are often combined in an overall system to increase efficiency and reliability of the energy generation system. A collaborative group of researchers from Australia and

Concentrated Solar Power and Thermal Energy Storage are two technologies that are currently being explored as environmentally friendly methods of energy generation. The two technologies are often combined in an overall system to increase efficiency and reliability of the energy generation system. A collaborative group of researchers from Australia and the United States formed a project to design solar concentrators that utilize Concentrated Solar Power and Thermal Energy Storage. The collaborators from Arizona State designed a Latent Heat Thermal Energy Storage system for the project. It was initially proposed that the system utilize Dowtherm A as the Heat Transfer Fluid and a tin alloy as the storage material. Two thermal reservoirs were designed as part of the system; one reservoir was designed to be maintained at 240˚ C, while the other reservoir was designed to be maintained at 210˚ C. The tin was designed to receive heat from the hot reservoir during a charging cycle and discharge heat to the cold reservoir during a discharge cycle. From simulation, it was estimated that the system would complete a charging cycle in 17.5 minutes and a discharging cycle in 6.667 minutes [1]. After the initial design was fabricated and assembled, the system proved ineffective and did not perform as expected. Leaks occurred within the system under high pressure and the reservoirs could not be heated to the desired temperatures. After adding a flange to one of the reservoirs, it was decided that the system would be run with one reservoir, with water as the Heat Transfer Fluid. The storage material was changed to paraffin wax, because it would achieve phase change at a temperature lower than the boiling point of water. Since only one reservoir was available, charging cycle tests were performed on the system to gain insight on system performance. It was found that the paraffin sample only absorbs 3.29% of the available heat present during a charging cycle. This report discusses the tests performed on the system, the analysis of the data from these tests, the issues with the system that were revealed from the analyses, and potential design changes that would increase the efficiency of the system.
ContributorsKocher, Jordan Daniel (Author) / Wang, Robert (Thesis director) / Phelan, Patrick (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
133434-Thumbnail Image.png
Description
Solar panels need to be both cost effective and environmentally friendly to compete with traditional energy forms. Photovoltaic recycling has the potential to mitigate the harm of waste, which is often landfilled, while putting material back into the manufacturing process. Out of many, three methods show much promise: Full Recovery

Solar panels need to be both cost effective and environmentally friendly to compete with traditional energy forms. Photovoltaic recycling has the potential to mitigate the harm of waste, which is often landfilled, while putting material back into the manufacturing process. Out of many, three methods show much promise: Full Recovery End-of-Life Photovoltaic (FRELP), mechanical, and sintering-based recycling. FRELP recycling has quickly gained prominence in Europe and promises to fully recover the components in a solar cell. The mechanical method has produced high yields of valuable materials using basic and inexpensive processes. The sintering method has the potential to tap into a large market for feldspar. Using a levelized cost of electricity (LCOE) analysis, the three methods could be compared on an economic basis. This showed that the mechanical method is least expensive, and the sintering method is the most expensive. Using this model, all recycling methods are less cost effective than the control analysis without recycling. Sensitivity analyses were then done on the effect of the discount rate, capacity factor, and lifespan on the LCOE. These results showed that the change in capacity factor had the most significant effect on the levelized cost of electricity. A final sensitivity analysis was done based on the decreased installation and balance of systems costs in 2025. With a 55% decrease in these costs, the LCOE decreased by close to $0.03/kWh for each method. Based on these results, the cost of each recycling method would be a more considerable proportion of the overall LCOE of the solar farm.
ContributorsMeister, William Frederick (Author) / Goodnick, Stephen (Thesis director) / Phelan, Patrick (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05