Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 1 of 1
Filtering by

Clear all filters

164793-Thumbnail Image.png
Description
This paper presents the electrolytic application of a load-matching PV system to produce green hydrogen. The system has proven its viability with purely resistive loads, and a static analysis has shown the performance potential of the system for electrolytic applications. This paper focuses on dynamic simulation of the load-matching PV

This paper presents the electrolytic application of a load-matching PV system to produce green hydrogen. The system has proven its viability with purely resistive loads, and a static analysis has shown the performance potential of the system for electrolytic applications. This paper focuses on dynamic simulation of the load-matching PV system for green hydrogen production in SIMULINK. It is shown that an over 99% energy transfer efficiency from the PV array’s available energy to the electrolytic loads can be achieved under dynamic conditions for the system. The design parameters to optimize include the number of hydrogen cells per stack, the stack resistance, and the number of available stacks in the system. This system provides a simple but efficient approach for large-scale photovoltaic hydrogen production.
ContributorsPolo, Christian (Author) / Tao, Meng (Thesis director) / Parquette, William (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor) / Industrial, Systems & Operations Engineering Prgm (Contributor)
Created2022-05