Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

135490-Thumbnail Image.png
Description
Duckponics is an unconventional form of aquaponics that has recently been implemented by a small community in Washington State as an experiment in sustainable methods of food production. The community created the Duckponics system to test the possibility of using the waste of ducks present on the farm to fertilize

Duckponics is an unconventional form of aquaponics that has recently been implemented by a small community in Washington State as an experiment in sustainable methods of food production. The community created the Duckponics system to test the possibility of using the waste of ducks present on the farm to fertilize crop plants. This research paper examines aspects of the nitrogen cycle within this system to determine the efficacy of nitrogen removal by plants and microbes. More specifically, the research examines (1) the microbial activity occurring in selected beds of the system, (2) the ability of hydroponic grow beds to retain inorganic nitrogen, and (3) how periodic flushing of the system affects nitrogen retention. Water data was collected in all system tanks using aquarium test strips, but water samples were collected for flow injection analysis in (1) one of the grow beds, (2) the duck pond, and (3) a control bed with no plants but filled with gravel and inoculated with the same bacteria from the grow bed. Samples were then analyzed for ammonia (NH4+-N) and combined nitrite and nitrate (NOx-N) concentrations. The results show that the treatment type (control, duck pond, or grow bed) was a significant (p<0.05) predictor of NH4+-N, NOx-N, and total inorganic nitrogen (TIN) in the porewater of the treatment beds. The grow bed was found to have 100% removal of TIN, whereas the control had 0% TIN removal (195% increase). Timing of the sample in relation to the flushing events was a moderately significant predictor of TIN, NH4+-N and NOx-N in the duck pond (p = 0.07 for TIN, p = 0.12 for NH4+-N, p = 0.11 for NOx-N), with an overall decrease in TIN after flood pulses. NH4+-N concentrations at the inlet and outlet were found to be significantly different in the grow bed (p=0.037), but not the control, and moderately significantly different (p<0.15) for NOx-N and TIN in the grow bed (p=0.072 for NOx-N, p=0.075 for TIN), but significant for the control (p=0.043). These findings show evidence of nitrification in the grow bed and control, plant presence significantly contributing to nitrogen removal in the grow bed, and some hydrologic flushing of NOx-N out of the duck pond during pump cycles.
ContributorsPanfil, Daniela Kristiina (Author) / Doucette, Sonya (Thesis director) / Palta, Monica (Committee member) / Moody, Jack (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / School of Sustainability (Contributor) / W. P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135614-Thumbnail Image.png
Description
Accidental wetlands have been created on the bed of the Salt River and are fed by storm-water outfalls discharging at various sections of the Phoenix Metropolitan Area. Water discharges from these outfalls throughout the year, during both dry conditions (base flow) and during rain events (storm flow). In this study,

Accidental wetlands have been created on the bed of the Salt River and are fed by storm-water outfalls discharging at various sections of the Phoenix Metropolitan Area. Water discharges from these outfalls throughout the year, during both dry conditions (base flow) and during rain events (storm flow). In this study, DOC content and composition was studied during these two flow conditions, in the outfalls and along the wetland flow path. The importance of DOC lies in its role in transporting carbon via water movement, between different parts of a landscape, and therefore between pools in the ecosystem. Urbanization has influenced content and composition of DOC entering the accidental urban wetland via outfalls as they represent watersheds from different areas in Phoenix. First, DOC load exhibited higher quantities during stormflow compared to baseflow conditions. Second, DOC load and fluorescence analysis outcomes concluded the outfalls are different from each other. The inputs of water on the north side of the channel represent City of Phoenix watersheds were similar to each other and had high DOC load. The northern outfalls are both different in load and composition from the outfall pipe on the southern bank of the wetland as it represents South Mountain watershed. Fluorescence analysis results also concluded compositional changes occurred along the wetland flow path during both stormflow and baseflow conditions. In this study, it was explored how urbanization and the associated changes in hydrology and geomorphology have affected a desert wetland's carbon content.
ContributorsBone, Stephanie Rosalia (Author) / Hartnett, Hilairy (Thesis director) / Palta, Monica (Committee member) / Mascaro, Giuseppe (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05