Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 10 of 11
Filtering by

Clear all filters

136556-Thumbnail Image.png
Description
Due to the environmental problems caused by global warming, it has become necessary to reduce greenhouse gas emissions across the planet. Biofuels, such as ethanol, have proven to release cleaner emissions when combusted. However, large scale production of these alcohols is uneconomical and inefficient due to limitations in standard separation

Due to the environmental problems caused by global warming, it has become necessary to reduce greenhouse gas emissions across the planet. Biofuels, such as ethanol, have proven to release cleaner emissions when combusted. However, large scale production of these alcohols is uneconomical and inefficient due to limitations in standard separation processes, the most common being distillation. Pervaporation is a novel separation technique that utilizes a specialized membrane to separate multicomponent solutions. In this research project, pervaporation utilizing ZIF-71/PDMS mixed matrix membranes are investigated to see their ability to recover ethanol from an ethanol/aqueous separation. Membranes with varying nanoparticle concentrations were created and their performances were analyzed. While the final results indicate that no correlation exists between nanoparticle weight percentage and selectivity, this technology is still a promising avenue for biofuel production. Future work will be conducted to improve this existing process and enhance membrane selectivity.
ContributorsHoward, Chelsea Elizabeth (Author) / Lind, Mary Laura (Thesis director) / Nielsen, David (Committee member) / Greenlee, Lauren (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor) / Materials Science and Engineering Program (Contributor)
Created2015-05
137006-Thumbnail Image.png
Description
Alzheimer's disease (AD), which currently affects approximately 5.4 million Americans, is a type of dementia, which causes memory, cognitive, and behavioral problems. AD is among the top 10 leading causes of death in the United States, typically affecting people ages 65 and older. Beta-Amyloid (Aβ) is an Alzheimer's target protein,

Alzheimer's disease (AD), which currently affects approximately 5.4 million Americans, is a type of dementia, which causes memory, cognitive, and behavioral problems. AD is among the top 10 leading causes of death in the United States, typically affecting people ages 65 and older. Beta-Amyloid (Aβ) is an Alzheimer's target protein, which starts as a single protein, but can misfold and bind to itself, forming larger chains and eventually fibrils and plaques of Aβ in the brain. Antibodies that bind to different regions and sizes of Aβ may prevent progression into a more toxic stage. The antibody worked with in this thesis, A4 scFv, binds to oligomeric Aβ. The objective of this antibody research is to optimize the production of functional antibodies, specifically A4, through modifications in the scFv growth process, in order to enhance the discovery of possible diagnostics and therapeutics for Alzheimer's disease. In order to produce functional A4 antibody, four complex sugars were tested in the E. Coli bacterial culture growth media that expresses the desired antibody. The sugars: sucrose, glucose, mannitol, and sorbitol were used in the growth process to improve the yield of functional antibody. Through the steps of growth, purification, and dialysis, the sugar sorbitol was found to provide the optimal results of ending functional antibody concentration. Once an ample amount of functional A4 scFv is produced, it can be used in assays as a biomarker for Alzheimer's disease.
ContributorsDolberg, Taylor Brianne (Author) / Sierks, Michael (Thesis director) / Nielsen, David (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor) / School of Sustainability (Contributor)
Created2014-05
134763-Thumbnail Image.png
Description
Enhancing the expression levels of Fabs (antigen-binding antibody fragments) in Escherichia coli is a difficult field that has a variety of potential exciting implications. The field has grown substantially in the past twenty years. The main area of difficulty is facilitating the entry of the antibody fragments into the periplasm

Enhancing the expression levels of Fabs (antigen-binding antibody fragments) in Escherichia coli is a difficult field that has a variety of potential exciting implications. The field has grown substantially in the past twenty years. The main area of difficulty is facilitating the entry of the antibody fragments into the periplasm of E. Coli, where the antibody fragments can be successfully expressed. Entry into the periplasm is difficult for antibody fragments due to their inability to fold in any other section besides the periplasm. Therefore it is necessary for the antibody to enter the periplasm in an unfolded state. Background research was done into inspecting the three primary methods of periplasmic entry: the Sec-dependent pathway, the SRP-dependent pathway (signal recognition particle) and the TAT-dependent pathway (twin arginine translocase). The Sec-dependent and SRP-dependent pathways were deemed more viable for expressing antibodies due to their ability to transfer an unfolded protein into the periplasm, which the TAT-dependent pathway cannot do. Academic research showed that the Sec-dependent and SRP-dependent pathways were equally viable methods, with more research being done into the Sec-dependent pathway, particularly of the OmpA signal sequence. Physical experiments were done using typical cloning procedures with slight modifications to the ligation step (Gibson Assembly was performed instead of normal ligation). These physical experiments showed that the Sec-dependent and SRP-dependent pathways were equally viable methods of periplasmic entry. The A4 and C6 antibodies were successfully expressed using these pathways. These antibodies were expressed on an SDS gel using 10% SDS. It was hypothesized that with further experimental modifications, using different signal sequences, Fabs can be expressed at higher and more consistent level.
ContributorsParker, Matthew David (Author) / Nannenga, Brent (Thesis director) / Nielsen, David (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
137722-Thumbnail Image.png
Description
Arson and intentional fires account for significant property losses and over 400 civilian deaths yearly in the United States. However, clearance rates for arson offenses remain low relative to other crimes. This issue can be attributed in part to the challenges associated with performing an arson investigation, in particular the

Arson and intentional fires account for significant property losses and over 400 civilian deaths yearly in the United States. However, clearance rates for arson offenses remain low relative to other crimes. This issue can be attributed in part to the challenges associated with performing an arson investigation, in particular the collection and interpretation of reliable data. PLOT-cryoadsorption, a dynamic headspace sampling technique developed at the National Institute of Standards and Technology, was proposed as an alternate technique for extracting ignitable liquid residues for analysis. The method was generally shown to be robust, flexible, precise, and accurate for a variety of applications. The possibility of using a real-time in situ monitor for screening samples was also discussed. This work, conducted by an undergraduate researcher, has implications in educational curricula as well as in the field of forensic science.
ContributorsNichols, Jessica Ellen (Author) / Forzani, Erica (Thesis director) / Nielsen, David (Committee member) / Tsow, Francis (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Chemical Engineering Program (Contributor)
Created2013-05
Description

Polyketides are a wide ranging class of natural microbial products highly relevant to the pharmacological industry. As chemical synthesis of polyketides is quite challenging, significant effort has been made to understand the polyketide synthases (PKSs) responsible for their natural production. Native to Streptomyces, the aln biosynthetic gene cluster was recently

Polyketides are a wide ranging class of natural microbial products highly relevant to the pharmacological industry. As chemical synthesis of polyketides is quite challenging, significant effort has been made to understand the polyketide synthases (PKSs) responsible for their natural production. Native to Streptomyces, the aln biosynthetic gene cluster was recently characterized and encodes for an iterative type I polyketide synthase (iT1PKS). This iT1PKS produces both , and ,-double bond polyketides named allenomycins; however, the basis in which one bond is chosen over the other is not yet clear. The dehydratase domain, AlnB_DH, is thought to be solely responsible for catalyzing double bond formation. Elucidation of enzyme programming is the first step towards reprogramming AlnB_DH to produce novel industrially relevant products. The Nannenga lab has worked as collaborators to the Zhao lab at the University of Illinois at Urbana-Champaign to unravel AlnB_DH’s structure and mechanism. Here, mutant constructs of AlnB_DH are developed to elucidate enzyme structure and provide insight into active site machinery. The primary focus of this work is on the development of the mutant constructs themselves rather than the methods used for structural or mechanistic determination. Truncated constructs were successfully developed for crystallization and upon x-ray diffraction, a 2.45 Å resolution structure was determined. Point-mutated constructs were then developed based on structural insights, which identified H49, P58, and H62 as critical residues in active site machinery.

ContributorsBlackson, Wyatt (Author) / Nannenga, Brent (Thesis director) / Nielsen, David (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor) / School of Molecular Sciences (Contributor)
Created2023-05
132166-Thumbnail Image.png
Description
Due to the wide range of health properties flavonoids possess, flavonoids are sold in health supplements to the general public. Flavonoids are also utilized in research but have a high cost due to current production techniques. This project focuses on engineering two DNA recombinants to develop new strains of Corynebacterium

Due to the wide range of health properties flavonoids possess, flavonoids are sold in health supplements to the general public. Flavonoids are also utilized in research but have a high cost due to current production techniques. This project focuses on engineering two DNA recombinants to develop new strains of Corynebacterium glutamicum that can produce flavonoids pinocembrin and naringenin. After culturing Escherichia coli colonies containing genes of interest, the genes were collected and purified by PCR reactions. The recombinant plasmid was assembled using CPEC and successfully transformed into Escherichia coli, with plans to transform Corynebacterium glutamicum to experiment and determine which recombinant can produce more pinocembrin and naringenin. Design work for other DNA recombinants, which were not the focus of this project, was also completed.
ContributorsWong, Adam (Co-author, Co-author) / Varman, Arul Mozhy (Thesis director) / Nielsen, David (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132228-Thumbnail Image.png
Description
Fossil fuels have been the primary source of energy in the world for many decades. However, they are among the top contributors of the greenhouse gas emissions in the atmosphere. The objective of this research was to produce a more environmentally friendly biofuel from Algae-Helix and Salicornia biomasses. Experiments were

Fossil fuels have been the primary source of energy in the world for many decades. However, they are among the top contributors of the greenhouse gas emissions in the atmosphere. The objective of this research was to produce a more environmentally friendly biofuel from Algae-Helix and Salicornia biomasses. Experiments were conducted using a hydrothermal liquefaction (HTL) technique in the HTL reactor to produce biofuel that can potentially replace fossil fuel usage. Hydrothermal Liquefaction is a method used to convert the biomass into the biofuels. HTL experiments on Algae-Helix and Salicornia at 200°C-350°C and 430psi were performed to investigate the effect of temperature on the biocrude yield of the respective biomass used. The effect of the biomass mixture (co-liquefaction) of Salicornia and algae on the amount of biocrude produced was also explored. The biocrude and biochar (by-product) obtained from the hydrothermal liquefaction process were also analyzed using thermogravimetric analyzer (TGA). The maximum biocrude yield for the algae-helix biomass and for the Salicornia biomass were both obtained at 300°C which were 34.63% and 7.65% respectively. The co-liquefaction of the two biomasses by 50:50 provided a maximum yield of 17.26% at 250°C. The co-liquefaction of different ratios explored at 250°C and 300°C concluded that Salicornia to algae-helix ratio of 20:80 produced the highest yields of 22.70% and 31.97%. These results showed that co-liquefaction of biomass if paired well with the optimizing temperature can produce a high biocrude yield. The TGA profiles investigated have shown that salicornia has higher levels of ash content in comparison with the algae-helix. It was then recommended that for a mixture of algae and Salicornia, large-scale biofuel production should be conducted at 250℃ in a 20:80 salicornia to algae biocrude ratio, since it lowers energy needs. The high biochar content left can be recycled to optimize biomass, and prevent wastage.
ContributorsLaideson, Maymary Everrest (Co-author) / Luboowa, Kato (Co-author) / Deng, Shuguang (Thesis director) / Nielsen, David (Committee member) / Chemical Engineering Program (Contributor) / Economics Program in CLAS (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132296-Thumbnail Image.png
Description
Fossil fuels have been the primary source of energy in the world for many decades. However, they are among the top contributors of the greenhouse gas emissions in the atmosphere. The objective of this research was to produce a more environmentally friendly biofuel from Algae-Helix and Salicornia biomasses. Experiments

Fossil fuels have been the primary source of energy in the world for many decades. However, they are among the top contributors of the greenhouse gas emissions in the atmosphere. The objective of this research was to produce a more environmentally friendly biofuel from Algae-Helix and Salicornia biomasses. Experiments were conducted using a hydrothermal liquefaction (HTL) technique in the HTL reactor to produce biofuel that can potentially replace fossil fuel usage. Hydrothermal Liquefaction is a method used to convert the biomass into the biofuels. HTL experiments on Algae-Helix and Salicornia at 200°C-350°C and 430psi were performed to investigate the effect of temperature on the biocrude yield of the respective biomass used. The effect of the biomass mixture (co-liquefaction) of Salicornia and algae on the amount of biocrude produced was also explored. The biocrude and biochar (by-product) obtained from the hydrothermal liquefaction process were also analyzed using thermogravimetric analyzer (TGA). The maximum biocrude yield for the algae-helix biomass and for the Salicornia biomass were both obtained at 300°C which were 34.63% and 7.65% respectively. The co-liquefaction of the two biomasses by 50:50 provided a maximum yield of 17.26% at 250°C. The co-liquefaction of different ratios explored at 250°C and 300°C concluded that Salicornia to algae-helix ratio of 20:80 produced the highest yields of 22.70% and 31.97%. These results showed that co-liquefaction of biomass if paired well with the optimizing temperature can produce a high biocrude yield. The TGA profiles investigated have shown that salicornia has higher levels of ash content in comparison with the algae-helix. It was then recommended that for a mixture of algae and Salicornia, large-scale biofuel production should be conducted at 250℃ in a 20:80 salicornia to algae biocrude ratio, since it lowers energy needs. The high biochar content left can be recycled to optimize biomass, and prevent wastage.
ContributorsLuboowa, Kato Muhammed (Co-author) / Laideson, Maymary (Co-author) / Deng, Shuguang (Thesis director) / Nielsen, David (Committee member) / Chemical Engineering Program (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
131103-Thumbnail Image.png
Description
The development of Corynebacterium glutamicum for the microbial production of high-value products has made this bacterium an industrial workhorse. This metabolically engineered microbe is capable of accumulating and secreting flavonoids, a class of high functioning compounds found in plants. In human health, flavonoids are known to have powerful antioxidant, anti-inflammatory,

The development of Corynebacterium glutamicum for the microbial production of high-value products has made this bacterium an industrial workhorse. This metabolically engineered microbe is capable of accumulating and secreting flavonoids, a class of high functioning compounds found in plants. In human health, flavonoids are known to have powerful antioxidant, anti-inflammatory, anticancer, and antiviral properties which has led the growing interest to produce these compounds commercially. Recent literature seeks to overcome potential pathway bottlenecks to optimize flavonoid production by regulating protein expression within the central carbon, shikimate, chorismate, and fatty acid synthesis pathways. This paper reviews engineering strategies performed to increase the precursor titers of malonyl-CoA, phenylalanine, and tyrosine for increased flavonoid production.
ContributorsBalbas, Elissa (Author) / Varman, Arul (Thesis director) / Nielsen, David (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
164979-Thumbnail Image.png
Description

Esters are important solvents in multiple industries including adhesives, food, and pharmaceuticals. Although esters are biodegradable solvents, the conventional process of producing them is not eco-friendly because they are largely derived from petrochemicals. This has led scientists to consider implementing biological routes in their production process by incorporating heterologous or

Esters are important solvents in multiple industries including adhesives, food, and pharmaceuticals. Although esters are biodegradable solvents, the conventional process of producing them is not eco-friendly because they are largely derived from petrochemicals. This has led scientists to consider implementing biological routes in their production process by incorporating heterologous or improving inherent esterification pathways. However, due to inequality in the biosynthesis of esters and their precursors (organic acid and alcohol), a significant amount of precursors are left unconverted, thereby lowering overall esterification efficiency. Therefore, the primary goal of the current research is to improve the ester titers by incorporating one more step of in vitro esterification with the culture broth, thereby esterifying the unconverted precursors using high efficiency commercial enzymes in the presence of compatible organic solvent. In principle, the medium containing the precursors will be treated with the enzyme in presence of organic solvent, where the precursors will be distributed in both the phases, aqueous and organic, based on their polarity, and the enzymatic esterification will happen at the interface. Hence, as a first step, efforts were made to optimize the reaction conditions, beginning with choosing the most efficient organic solvent and corresponding enzyme candidate. Our results showed that, for production of ethyl acetate through this reactive extraction approach, Novozyme435 exhibited significant esterification with chloroform, with almost 85% conversion efficiency. Further optimizations with phase ratios, pH and incubation time showed that the pH 6.0 (3.1 g/L) was the most optimum where ethyl acetate titer was found to improve 10 times than that at pH 7.0 (0.164 g/L) with the phase ratio of 1:1. The kinetic studies further added that the incubation at 37oC gives the maximum ethyl acetate production within 8h. After initial optimization studies, cell broth from E. coli cells transformed to overproduce an esterase was also tested with the reactive extraction method. It was found that there was a ~7.5X decrease in ethyl acetate production in the cell media versus synthetic samples with the same concentration of reactants. Such a large decrease indicates that enzymatic promiscuity or inhibition currently prevent the cell samples from reaching the same conversion as synthetic studies. To characterize the maximum reaction rate (Vmax) and affinity constants of the substrates to Novozym 435, further kinetic studies were performed with one minute of reaction. The mathematical model employed assumes that enzyme kinetics rather than diffusion was the rate limiting step, that the concentrations of reactants at the interface are equivalent to the initial concentration of reactants, and that neither substrate is an inhibitor. Vmax was found to be 18.5 Mmol min-1g-1 (of catalyst used), and the affinity constants were 0.957 M and 0.00557 M for acetic acid and ethanol respectively. Vmax was similar to literature values with Novozym 435, and the affinity constants indicate a much higher binding efficiency of ethanol in comparison to acetic acid, indicating that a cocktail of esters are likely produced from Novozym 435 in cell broth. Overall, moving away from fossil-fuel dependence is necessary to promote sustainable industry standards, and microbial cell factories combined with reactive extraction, if optimized for industrial applications, can replace harmful environmental procedures. By optimizing the reactive extraction process for ester production, biorefineries could become more competitive and economically feasible for numerous applications.

ContributorsKartchner, Danika (Author) / Varman, Arul Mozhy (Thesis director) / Nielsen, David (Committee member) / Soundappan, Thiagarajan (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor) / Watts College of Public Service & Community Solut (Contributor)
Created2022-05