Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 5 of 5
Filtering by

Clear all filters

137532-Thumbnail Image.png
Description
The organic cation transporter 3 (OCT3) is a polyspecific monoamine transporter
found in the human and rat brain. In Rats, OCT3 is the only known monoamine transporter inhibited by physiological concentrations of corticosteroids. We hypothesized that CORT- mediated inhibition of OCT3 blocks the clearance of serotonin (5-HT) leading to an increase

The organic cation transporter 3 (OCT3) is a polyspecific monoamine transporter
found in the human and rat brain. In Rats, OCT3 is the only known monoamine transporter inhibited by physiological concentrations of corticosteroids. We hypothesized that CORT- mediated inhibition of OCT3 blocks the clearance of serotonin (5-HT) leading to an increase 5-HT receptor-mediated signaling. In experiment 1, due to conflicting reports on the location of OCT3 mRNA in the rat brain, in situ hybridization was performed on brain tissue sections. RNA was extracted from rat brain tissue, reverse transcribed into cDNA, and then polymerase chain reaction (PCR) was performed to generate riboprobe templates. The riboprobe templates were then used for in vitro transcription of digoxigenin (DIG)-labeled riboprobes complementary to OCT3. In experiment 2, 12 rats from an identical cohort were exposed to a chronic restraint stress paradigm (two hours/day for seven days, STRESS group), while the other 12 remained in their home cages (CTRL group). Twenty-four hours after the last stressor, all animals were euthanized and their brains immediately removed and frozen. Bilateral tissue punches were collected from 300μm coronal sections from the CA1 region of the dorsal hippocampus, basolateral amygdala (BLA), and dorsomedial hypothalamus (DMH). The relative OCT2, OCT3, and 5HT2a mRNA levels from each tissue punch were determined via quantitative real-time polymerase chain reaction (qPCR). The results of experiment 1 confirmed the presence of OCT3 mRNA in the CA1, amygdala, and the DMH. The results of experiment 2 show that chronic restraint stress did not alter gene expression for 5-HT2A, OCT2, and OCT3. These data may help reveal new information involving OCT3’s role in the hippocampus, amygdala and DMH in regards to localization and mRNA expression levels after exposure to a stressor.
ContributorsTompkins, Heather Camila (Author) / Orchinik, Miles (Thesis director) / Neisewander, Janet (Committee member) / Talboom, Joshua (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2013-05
137078-Thumbnail Image.png
Description
N. fowleri has been coined the "brain-eating" amoeba, receiving increased attention from both the media and scientific research since its discovery in 1961. While infection is extremely rare, it infects humans through the nasal passage after exposure to contaminated, warm freshwater, causing the brain destroying reaction primary amoebic meningoencephalitis (PAM).

N. fowleri has been coined the "brain-eating" amoeba, receiving increased attention from both the media and scientific research since its discovery in 1961. While infection is extremely rare, it infects humans through the nasal passage after exposure to contaminated, warm freshwater, causing the brain destroying reaction primary amoebic meningoencephalitis (PAM). Those infected with PAM present with symptoms such as severe headache and loss of the sense of smell and will typically die within a week thereafter. This fulminant pathogenicity has led to increased awareness of N. fowleri through the news and public health centers. This thesis aims to comprehensively review N. fowleri, the epidemiology and pathology of PAM, interventions against the disease, and how the news has portrayed N. fowleri and PAM. This thesis also strives to raise ethical and thought-provoking questions about how much media coverage and research funding N. fowleri receives given its rarity, as well as explore its value and novel contributions to understanding disease as a whole.
ContributorsFerrell, Chantell Isabell (Author) / Buetow, Kenneth (Thesis director) / Neisewander, Janet (Committee member) / McGlynn, Katherine (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / School of Life Sciences (Contributor)
Created2014-05
134699-Thumbnail Image.png
Description
Nicotine use is an outstanding public health problem with associated social and economic consequences. Nicotine is an active alkaloid compound in tobacco and is recognized as a psychoactive drug. Preclinically, nicotine addiction and relapse can be modeled using a self-administration-reinstatement paradigm. Here, we used a nicotine self-administration and contingent cue-induced

Nicotine use is an outstanding public health problem with associated social and economic consequences. Nicotine is an active alkaloid compound in tobacco and is recognized as a psychoactive drug. Preclinically, nicotine addiction and relapse can be modeled using a self-administration-reinstatement paradigm. Here, we used a nicotine self-administration and contingent cue-induced reinstatement model to examine rapid, transient synaptic plasticity (t-SP) induced by nicotine cue-triggered motivation. Although preliminary, treatment with the NMDA GluN2B subunit antagonist, ifenprodil, reduced reinstated nicotine seeking, and increased the percentage of spines with smaller head diameters. Thus, future studies are needed to fully parse out the role of NAcore GluN2B receptors in cued nicotine seeking and t-SP.
ContributorsMccallum, Joseph John (Author) / Gipson-Reichardt, Cassandra (Thesis director) / Neisewander, Janet (Committee member) / Olive, Michael Foster (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
135681-Thumbnail Image.png
Description
As the incidence of dementia continues to rise, the need for an effective and non-invasive method of intervention has become increasingly imperative. Music therapy has exhibited these qualities in addition to relatively low implementation costs, therefore establishing itself as a promising means of therapeutic intervention. In this review, current research

As the incidence of dementia continues to rise, the need for an effective and non-invasive method of intervention has become increasingly imperative. Music therapy has exhibited these qualities in addition to relatively low implementation costs, therefore establishing itself as a promising means of therapeutic intervention. In this review, current research was investigated in order to determine its effectiveness and uncover the neurochemical mechanisms that lead to positive manifestations such as improved memory recall, increased social affiliation, increased motivation, and decreased anxiety. Music therapy has been found to improve several aspects of memory recall. One proposed mechanism involves temporal entrainment, during which the melodic structures present in music provide a framework for chunking information. Although entrainment's role in the treatment of motor defects has been thoroughly studied, its role in treating cognitive disorders is still relatively new. Musicians have also been shown to demonstrate extensive plastic changes; therefore, it is hypothesized that non-musicians may also glean some benefits from engaging in music. Social affiliation has been found to increase due to increases in endogenous oxytocin. Oxytocin has also been shown to strengthen hippocampal spike transmission, a promising outcome for Alzheimer's patients. An increase in motivation has also been found to occur due to music's ability to tap into the reward center of the brain. Dopaminergic transmission between the VTA, NAc and higher functioning regions such as the OFC and hypothalamus has been revealed. Additionally, relaxing music decreases stress levels and modifies associated autonomic processes, i.e. heart rate, blood pressure, and respiratory rate. On the contrary, stimulating music has been found to initiate sympathetic nervous system activity. This is thought to occur by either a reflexive brainstem response or stimulus interpretation by the amygdala.
ContributorsFlores, Catalina Nicole (Author) / Redding, Kevin (Thesis director) / Hoffer, Julie (Committee member) / Neisewander, Janet (Committee member) / School of Molecular Sciences (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
131309-Thumbnail Image.png
Description
Transient receptor potential (TRP) channels are a diverse family of polymodally gated nonselective cation channels implicated in a variety of pathophysiologies. Two channels of specific interest are transient receptor potential melastatin 8 (TRPM8) and transient receptor potential vanilloid 1 (TRPV1).
TRPM8 is the primary cold sensor in humans and is activated

Transient receptor potential (TRP) channels are a diverse family of polymodally gated nonselective cation channels implicated in a variety of pathophysiologies. Two channels of specific interest are transient receptor potential melastatin 8 (TRPM8) and transient receptor potential vanilloid 1 (TRPV1).
TRPM8 is the primary cold sensor in humans and is activated by ligands that feel cool such as menthol and icilin. It is implicated to be involved in a variety of cancers, nociception, obesity, addiction, and thermosensitivity. There are thought to be conserved regions of structural and functional importance to the channel which can be identified by looking at the evolution of TRPM8 over time. Along with this, looking at different isoforms of TRPM8 which are structurally very different but functionally similar can help isolate regions of functional interest as well. Between TRP channels, the transmembrane domain is well conserved and thought to be important for sensory physiology. To learn about these aspects of TRPM8, three evolutionary constructs, the last common primate, the last common mammalian, and the last common vertebrate ancestor TRPM8 were cloned and subjected to preliminary studies. In addition to the initial ancestral TRPM8 studies, fundamental studies were initiated in method development to evaluate the use of biological signaling sequences to attempt to force non-trafficking membrane protein isoforms and biophysical constructs to the plasma membrane. To increase readout for these and other studies, a cellular based fluorescence assay was initiated. Eventual completion of these efforts will lead to better understanding of the mechanism that underlie TRPM8 function and provide enhanced general methods for ion channel studies.
Beyond TRPM8 studies, an experiment was designed to probe mechanistic features of TRPV1 ligand activation. TRPV1 is also a thermosensitive channel in the TRP family, sensing heat and vanilloid ligands like capsaicin, commonly found in chili peppers. This channel is also involved in many proinflammatory interactions and associated with cancers, nociception, and addiction. Better understanding binding interactions can lead to attempts to create therapeutics.
ContributorsShah, Karan (Author) / Van Horn, Wade (Thesis director) / Neisewander, Janet (Committee member) / Biegasiewicz, Kyle (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / School of Molecular Sciences (Contributor, Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05