Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 1 of 1
Filtering by

Clear all filters

Description

Regulation in the insurance market has increased greatly over the past four decades, and recent regulatory frameworks such as Solvency II have made simulations increasingly important. Monte Carlo simulations are often too inefficient to be used by themselves, and these Monte Carlo simulations begin to struggle when the complexity of

Regulation in the insurance market has increased greatly over the past four decades, and recent regulatory frameworks such as Solvency II have made simulations increasingly important. Monte Carlo simulations are often too inefficient to be used by themselves, and these Monte Carlo simulations begin to struggle when the complexity of insurance contracts increases. For that reason, there have been numerous suggested improvements to traditional MC methods such as the sample recycling method and a neural network method. This thesis will review various risk measures, the methods used to calculate them, and a detailed analysis of the neural network method and the sample recycling method. The sample recycling method and the neural network method will then be analyzed in detail, and a comparative analysis of the sample recycling method and the neural network method will be given. It was discovered that both the sample recycling method and the neural network method provide a large improvement in computational cost and overall run time with minor impacts on the accuracy. Thus, it was concluded that the sample recycling method is best suited for contracts where the inner loop estimations are particularly complex and the neural network is a general method that pairs well with complex input portfolios.

ContributorsWesten, Ron (Author) / Zhou, Kenneth (Thesis director) / Milovanovic, Jelena (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Physics (Contributor)
Created2023-05