Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 10 of 33
134301-Thumbnail Image.png
Description
The purpose of this paper is to discover what geometric characteristics of a wing and airfoil help to maximize leading edge suction through experimental testing. Three different stages of testing were conducted: a Proof of Concept, a Primary Experiment, and a Secondary Experiment. The Proof of Concept shows the effects

The purpose of this paper is to discover what geometric characteristics of a wing and airfoil help to maximize leading edge suction through experimental testing. Three different stages of testing were conducted: a Proof of Concept, a Primary Experiment, and a Secondary Experiment. The Proof of Concept shows the effects of leading edge suction and the benefits it can posses. The Primary Experiment provided inconclusive data due to inaccuracies in the equipment. As a result, the Secondary Experiment was conducted in order to reduce the error effect as much as possible on the data. Unfortunately the Secondary Experiment provided inaccurate data as well. However, this paper does provide enough evidence to begin to question some of the long held beliefs regarding theoretical induced drag and whether it is true under all circumstances, or if it is only a good approximation for airfoils with full leading-edge suction effects.
ContributorsMorrow, Martin (Author) / Takahashi, Timothy (Thesis director) / Middleton, James (Committee member) / School for the Engineering of Matter, Transport, and Energy (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
135353-Thumbnail Image.png
Description
Research on human grasp typically involves the grasp of objects designed for the study of fingertip forces. Instrumented objects for such studies have often been designed for the simulation of functional tasks, such as feeding oneself, or for rigidity such that the objects do not deform when grasped. The goal

Research on human grasp typically involves the grasp of objects designed for the study of fingertip forces. Instrumented objects for such studies have often been designed for the simulation of functional tasks, such as feeding oneself, or for rigidity such that the objects do not deform when grasped. The goal of this thesis was to design a collapsible, instrumented object to study grasp of breakable objects. Such an object would enable experiments on human grip responses to unexpected finger-object events as well as anticipatory mechanisms once object fragility has been observed. The collapsible object was designed to be modular to allow for properties such as friction and breaking force to be altered. The instrumented object could be used to study both human and artificial grasp.
ContributorsTorrez, Troy (Author) / Santos, Veronica (Thesis director) / Santello, Marco (Committee member) / Artemiadis, Panagiotis (Committee member) / Barrett, The Honors College (Contributor)
Created2012-05
136546-Thumbnail Image.png
Description
The generation of walking motion is one of the most vital functions of the human body because it allows us to be mobile in our environment. Unfortunately, numerous individuals suffer from gait impairment as a result of debilitating conditions like stroke, resulting in a serious loss of mobility. Our understanding

The generation of walking motion is one of the most vital functions of the human body because it allows us to be mobile in our environment. Unfortunately, numerous individuals suffer from gait impairment as a result of debilitating conditions like stroke, resulting in a serious loss of mobility. Our understanding of human gait is limited by the amount of research we conduct in relation to human walking mechanisms and their characteristics. In order to better understand these characteristics and the systems involved in the generation of human gait, it is necessary to increase the depth and range of research pertaining to walking motion. Specifically, there has been a lack of investigation into a particular area of human gait research that could potentially yield interesting conclusions about gait rehabilitation, which is the effect of surface stiffness on human gait. In order to investigate this idea, a number of studies have been conducted using experimental devices that focus on changing surface stiffness; however, these systems lack certain functionality that would be useful in an experimental scenario. To solve this problem and to investigate the effect of surface stiffness further, a system has been developed called the Variable Stiffness Treadmill system (VST). This treadmill system is a unique investigative tool that allows for the active control of surface stiffness. What is novel about this system is its ability to change the stiffness of the surface quickly, accurately, during the gait cycle, and throughout a large range of possible stiffness values. This type of functionality in an experimental system has never been implemented and constitutes a tremendous opportunity for valuable gait research in regard to the influence of surface stiffness. In this work, the design, development, and implementation of the Variable Stiffness Treadmill system is presented and discussed along with preliminary experimentation. The results from characterization testing demonstrate highly accurate stiffness control and excellent response characteristics for specific configurations. Initial indications from human experimental trials in relation to quantifiable effects from surface stiffness variation using the Variable Stiffness Treadmill system are encouraging.
ContributorsBarkan, Andrew Robert (Author) / Artemiadis, Panagiotis (Thesis director) / Santello, Marco (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2015-05
136510-Thumbnail Image.png
Description
This thesis focused on the development of a system that can sense light intensity and then control a smart film to provide the optimal light intensity for cyanobacteria. The overarching goal of this project is to further the study of biofuels as an alternative energy source by increasing growth rates.

This thesis focused on the development of a system that can sense light intensity and then control a smart film to provide the optimal light intensity for cyanobacteria. The overarching goal of this project is to further the study of biofuels as an alternative energy source by increasing growth rates. If more algae or cyanobacteria can be grown per day, then the cost to produce the biofuel will decrease. To achieve this goal, PDLC (polymer dispersed liquid crystal) film was selected to be controlled due to its unique properties. It can be controlled with electricity and has variable states, in other words, not restricted to simply on or off. It also blocks 80% ultraviolet light and reduces thermal heat gain by 40% which is an important consideration for outdoor growing situations. To control the film, a simple control system was created using an Arduino Uno, SainSmart 8 channel relay board, an inverter, and a power supply. A relay board was utilized to manage the 40 volts required by the PDLC film and protected the electronics on the Arduino Uno. To sense the light intensity, the Arduino Uno was connected to a photoresistor, which changes resistance with light intensity. A 15 day test of two flasks of Cyanobacteria Synechocycstis sp. 6803, one shaded by the PDLC film, and the other unshaded, yielded 65% difference in optical densities. Overall, the experiment showed promise for controlling light intensity for photobioreactors. Ideally, this research will help to optimize light intensities when growing cyanobacteria or algae outdoors or it will help to discover what an ideal light intensity is by allowing a researcher unprecedented control.
ContributorsRoney, Kitt Alicia (Author) / Nielsen, David (Thesis director) / Middleton, James (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2015-05
135856-Thumbnail Image.png
Description
The flipped classroom is a teaching method that flips the activities done in and out of class, i.e., concepts are learned out of class and problems are worked in class under the supervision of the instructor. Studies have indicated several benefits of the FC, including improved performance and engagement. In

The flipped classroom is a teaching method that flips the activities done in and out of class, i.e., concepts are learned out of class and problems are worked in class under the supervision of the instructor. Studies have indicated several benefits of the FC, including improved performance and engagement. In the past years, further studies have investigated the benefits of FC in statics, dynamics, and mechanics of materials courses and indicate similar performance benefits. However, these studies address a need for additional studies to validate their results due to the short length of their research or small classroom size. In addition, many of these studies do not measure student attitudes, such as self-efficacy, or the difference in time spent out of class on coursework. The objective of this research is to determine the effectiveness of the flipped classroom system (FC) in comparison to the traditional classroom system (TC) in a large mechanics of materials course. Specifically, it aims to measure student performance, student self-efficacy, student attitudes on lecture quality, motivation, attendance, hours spent out of class, practice, and support, and difference in impact between high, middle, and low achieving students. In order to accomplish this, three undergraduate mechanics of materials courses were analyzed during the spring 2015 semester. One FC section served as the experimental group (92 students), while the two TC sections served as the control group (125 students). To analyze student self-efficacy and attitudes, a survey instrument was designed to measure 18 variables and was administered at the end of the semester. Standardized core outcomes were compared between groups to analyze performance. This paper presents the specific course framework used in this FC, detailed results of the quantitative and qualitative analysis, and discussion of strengths and weaknesses. Overall, an overwhelming majority of students were satisfied with FC and would like more of their classes taught using FC. Strengths of this teaching method include greater confidence, better focus, higher satisfaction with practice in class and assistance received from instructors and peers, more freedom to express ideas and questions in class, and less time required outside of class for coursework. Results also suggest that this method has a greater positive impact on high and low achieving students and leads to higher performance. The criticisms made by students focused on lecture videos to have more worked examples. Overall, results suggest that FC is more effective than TC in a large mechanics of materials course.
ContributorsLee, Andrew Ryan (Author) / Zhu, Haolin (Thesis director) / Middleton, James (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136400-Thumbnail Image.png
Description
The purpose of this paper is to provide a new and improved design method for the Formula Society of Automotive Engineering (FSAE) team. There are five tasks that I accomplish in this paper: 1. I describe how the FSAE team is currently designing their car. This allows the reader to

The purpose of this paper is to provide a new and improved design method for the Formula Society of Automotive Engineering (FSAE) team. There are five tasks that I accomplish in this paper: 1. I describe how the FSAE team is currently designing their car. This allows the reader to understand where the flaws might arise in their design method. 2. I then describe the key aspects of systems engineering design. This is the backbone of the method I am proposing, and it is important to understand the key concepts so that they can be applied to the FSAE design method. 3. I discuss what is available in the literature about race car design and optimization. I describe what other FSAE teams are doing and how that differs from systems engineering design. 4. I describe what the FSAE team at Arizona State University (ASU) should do to improve their approach to race car design. I go into detail about how the systems engineering method works and how it can and should be applied to the way they design their car. 5. I then describe how the team should implement this method because the method is useless if they do not implement it into their design process. I include an interview from their brakes team leader, Colin Twist, to give an example of their current method of design and show how it can be improved with the new method. This paper provides a framework for the FSAE team to develop their new method of design that will help them accomplish their overall goal of succeeding at the national competition.
ContributorsPickrell, Trevor Charles (Author) / Trimble, Steven (Thesis director) / Middleton, James (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2015-05
133601-Thumbnail Image.png
Description
Most daily living tasks consist of pairing a series of sequential movements, e.g., reaching to a cup, grabbing the cup, lifting and returning the cup to your mouth. The process by which we control and mediate the smooth progression of these tasks is not well understood. One method which we

Most daily living tasks consist of pairing a series of sequential movements, e.g., reaching to a cup, grabbing the cup, lifting and returning the cup to your mouth. The process by which we control and mediate the smooth progression of these tasks is not well understood. One method which we can use to further evaluate these motions is known as Startle Evoked Movements (SEM). SEM is an established technique to probe the motor learning and planning processes by detecting muscle activation of the sternocleidomastoid muscles of the neck prior to 120ms after a startling stimulus is presented. If activation of these muscles was detected following a stimulus in the 120ms window, the movement is classified as Startle+ whereas if no sternocleidomastoid activation is detected after a stimulus in the allotted time the movement is considered Startle-. For a movement to be considered SEM, the activation of movements for Startle+ trials must be faster than the activation of Startle- trials. The objective of this study was to evaluate the effect that expertise has on sequential movements as well as determining if startle can distinguish when the consolidation of actions, known as chunking, has occurred. We hypothesized that SEM could distinguish words that were solidified or chunked. Specifically, SEM would be present when expert typists were asked to type a common word but not during uncommon letter combinations. The results from this study indicated that the only word that was susceptible to SEM, where Startle+ trials were initiated faster than Startle-, was an uncommon task "HET" while the common words "AND" and "THE" were not. Additionally, the evaluation of the differences between each keystroke for common and uncommon words showed that Startle was unable to distinguish differences in motor chunking between Startle+ and Startle- trials. Explanations into why these results were observed could be related to hand dominance in expert typists. No proper research has been conducted to evaluate the susceptibility of the non-dominant hand's fingers to SEM, and the results of future studies into this as well as the results from this study can impact our understanding of sequential movements.
ContributorsMieth, Justin Richard (Author) / Honeycutt, Claire (Thesis director) / Santello, Marco (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137299-Thumbnail Image.png
Description
This thesis focused on grasping tasks with the goal of investigating, analyzing, and quantifying human catching trends by way of a mathematical model. The aim of this project was to study human trends in a dynamic grasping task (catching a rolling ball), relate those discovered trends to kinematic characteristics of

This thesis focused on grasping tasks with the goal of investigating, analyzing, and quantifying human catching trends by way of a mathematical model. The aim of this project was to study human trends in a dynamic grasping task (catching a rolling ball), relate those discovered trends to kinematic characteristics of the object, and use this relation to control a robot hand in real time. As an ultimate goal, it was hoped that this research will aide in furthering the bio-inspiration in robot control methods. To achieve the above goal, firstly a tactile sensing glove was developed. This instrument allowed for in depth study of human reactionary grasping movements when worn by subjects during experimentation. This sensing glove system recorded force data from the palm and motion data from four fingers. From these data sets, temporal trends were established relating to when subjects initiated grasping during each trial. Moreover, optical tracking was implemented to study the kinematics of the moving object during human experiments and also to close the loop during the control of the robot hand. Ultimately, a mathematical bio-inspired model was created. This was embodied in a two-term decreasing power function which related the temporal trend of wait time to the ball initial acceleration. The wait time is defined as the time between when the experimental conductor releases the ball and when the subject begins to initiate grasping by closing their fingers, over a distance of four feet. The initial acceleration is the first acceleration value of the object due to the force provided when the conductor throws the object. The distance over which the ball was thrown was incorporated into the model. This is discussed in depth within the thesis. Overall, the results presented here show promise for bio-inspired control schemes in the successful application of robotic devices. This control methodology will ideally be developed to move robotic prosthesis past discrete tasks and into more complicated activities.
ContributorsCard, Dillon (Co-author) / Mincieli, Jennifer (Co-author) / Artemiadis, Panagiotis (Thesis director) / Santos, Veronica (Committee member) / Middleton, James (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / W. P. Carey School of Business (Contributor)
Created2014-05
137409-Thumbnail Image.png
Description
Electromyography (EMG) and Electroencephalography (EEG) are techniques used to detect electrical activity produced by the human body. EMG detects electrical activity in the skeletal muscles, while EEG detects electrical activity from the scalp. The purpose of this study is to capture different types of EMG and EEG signals and to

Electromyography (EMG) and Electroencephalography (EEG) are techniques used to detect electrical activity produced by the human body. EMG detects electrical activity in the skeletal muscles, while EEG detects electrical activity from the scalp. The purpose of this study is to capture different types of EMG and EEG signals and to determine if the signals can be distinguished between each other and processed into output signals to trigger events in prosthetics. Results from the study suggest that the PSD estimates can be used to compare signals that have significant differences such as the wrist, scalp, and fingers, but it cannot fully distinguish between signals that are closely related, such as two different fingers. The signals that were identified were able to be translated into the physical output simulated on the Arduino circuit.
ContributorsJanis, William Edward (Author) / LaBelle, Jeffrey (Thesis director) / Santello, Marco (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2013-12
137445-Thumbnail Image.png
Description
This thesis is concerned with off-design performance of gas turbines using the program GasTurb12. The thesis provides basic background research into gas turbine performance and an extensive discussion about off-design performance. The program GasTurb12 is used to perform design point calculations to verify the program against known textbook results and

This thesis is concerned with off-design performance of gas turbines using the program GasTurb12. The thesis provides basic background research into gas turbine performance and an extensive discussion about off-design performance. The program GasTurb12 is used to perform design point calculations to verify the program against known textbook results and to perform a detailed off-design analysis based on a formulated problem statement. The results in GasTurb12 showed good correlation with the textbook results and the detailed off-design analysis provides valuable information about gas turbine design. An implementation strategy has been suggested to not only research further uses of GasTurb12, but also to incorporate it into undergraduate curriculum. It is recommended to further evaluate the capabilities of GasTurb12 to verify the program with real gas turbine systems.
ContributorsMartinjako, Jeremy Chey (Author) / Trimble, Steven (Thesis director) / Takahashi, Timothy (Committee member) / Middleton, James (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2013-05