Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 1 of 1
Filtering by

Clear all filters

132912-Thumbnail Image.png
Description
In this project, an existing waveform generator designed by the vagus nerve stimulation (VNS) technology firm Hoolest Performance Technologies was modified and characterized. Voltage feedback and current feedback systems were designed in order to improve output voltage and current regulation. A wireless communication system was implemented onboard the newly designed

In this project, an existing waveform generator designed by the vagus nerve stimulation (VNS) technology firm Hoolest Performance Technologies was modified and characterized. Voltage feedback and current feedback systems were designed in order to improve output voltage and current regulation. A wireless communication system was implemented onboard the newly designed waveform generator in order to improve user experience and allow the system to be controlled remotely. Finally, a custom printed circuit board was designed according to the established circuit schematics for the above components, and the layout was miniaturized to a total board footprint area of 1.5 square inches. The completed device was characterized according to several figures of merit including current consumption, voltage and current regulation, and short-circuit behavior.
ContributorsPatterson, John Michael (Author) / Kozicki, Michael (Thesis director) / Mian, Sami (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05