Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 1 of 1
Filtering by

Clear all filters

166031-Thumbnail Image.png
Description

Plant-made virus-like particles (VLPs), composed of HIV-1 Gag and deconstructed gp41 proteins, have been shown to be safe and immunogenic in mice. Here, we report the successful production of HIV-1 Gag/dgp41 VLPs in Nicotiana benthamiana, using an enhanced geminivirus-based expression vector. This novel vector results in unique expression kinetics, with

Plant-made virus-like particles (VLPs), composed of HIV-1 Gag and deconstructed gp41 proteins, have been shown to be safe and immunogenic in mice. Here, we report the successful production of HIV-1 Gag/dgp41 VLPs in Nicotiana benthamiana, using an enhanced geminivirus-based expression vector. This novel vector results in unique expression kinetics, with peak protein accumulation and minimal necrosis achieved on day 4 post-infiltration. In comparing various purification strategies, it was determined that a 20% ammonium sulfate precipitation is an effective and efficient method for removing plant proteins and purifying the recombinant VLPs of interest. If further purification is required, this may be achieved through ultracentrifugation. VLPs are a useful platform for a variety of biomedical applications and developing the technology to efficiently produce VLPs in the plant expression system is of critical importance.

ContributorsFleming, Claire (Author) / Mor, Tsafrir (Thesis director) / Mason, Hugh (Committee member) / Kamzina, Aigerim (Committee member) / Barrett, The Honors College (Contributor) / Department of Physics (Contributor) / School of Life Sciences (Contributor)
Created2022-05