Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

147863-Thumbnail Image.png
Description

Over the years, advances in research have continued to decrease the size of computers from the size of<br/>a room to a small device that could fit in one’s palm. However, if an application does not require extensive<br/>computation power nor accessories such as a screen, the corresponding machine could be microscopic,<br/>only

Over the years, advances in research have continued to decrease the size of computers from the size of<br/>a room to a small device that could fit in one’s palm. However, if an application does not require extensive<br/>computation power nor accessories such as a screen, the corresponding machine could be microscopic,<br/>only a few nanometers big. Researchers at MIT have successfully created Syncells, which are micro-<br/>scale robots with limited computation power and memory that can communicate locally to achieve<br/>complex collective tasks. In order to control these Syncells for a desired outcome, they must each run a<br/>simple distributed algorithm. As they are only capable of local communication, Syncells cannot receive<br/>commands from a control center, so their algorithms cannot be centralized. In this work, we created a<br/>distributed algorithm that each Syncell can execute so that the system of Syncells is able to find and<br/>converge to a specific target within the environment. The most direct applications of this problem are in<br/>medicine. Such a system could be used as a safer alternative to invasive surgery or could be used to treat<br/>internal bleeding or tumors. We tested and analyzed our algorithm through simulation and visualization<br/>in Python. Overall, our algorithm successfully caused the system of particles to converge on a specific<br/>target present within the environment.

ContributorsMartin, Rebecca Clare (Author) / Richa, Andréa (Thesis director) / Lee, Heewook (Committee member) / Computer Science and Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

We propose a new strategy for blackjack, BB-Player, which leverages Hidden Markov Models (HMMs) in online planning to sample a normalized predicted deck distribution for a partially-informed distance heuristic. Viterbi learning is applied to the most-likely sampled future sequence in each game state to generate transition and emission matrices for

We propose a new strategy for blackjack, BB-Player, which leverages Hidden Markov Models (HMMs) in online planning to sample a normalized predicted deck distribution for a partially-informed distance heuristic. Viterbi learning is applied to the most-likely sampled future sequence in each game state to generate transition and emission matrices for this upcoming sequence. These are then iteratively updated with each observed game on a given deck. Ultimately, this process informs a heuristic to estimate the true symbolic distance left, which allows BB-Player to determine the action with the highest likelihood of winning (by opponent bust or blackjack) and not going bust. We benchmark this strategy against six common card counting strategies from three separate levels of difficulty and a randomized action strategy. On average, BB-Player is observed to beat card-counting strategies in win optimality, attaining a 30.00% expected win percentage, though it falls short of beating state-of-the-art methods.

ContributorsLakamsani, Sreeharsha (Author) / Ren, Yi (Thesis director) / Lee, Heewook (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Computer Science and Engineering Program (Contributor)
Created2023-05