Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 10 of 30
132902-Thumbnail Image.png
Description
Characterization of particulate process and product design is a difficult field because of the unique bulk properties and behaviors of particles that differ from gasses and liquids. The purpose of this research is to develop an equation to relate the angle of repose and flowability, the ability of the particle

Characterization of particulate process and product design is a difficult field because of the unique bulk properties and behaviors of particles that differ from gasses and liquids. The purpose of this research is to develop an equation to relate the angle of repose and flowability, the ability of the particle to flow as it pertains to particulate processes and product design. This research is important in multiple industries such as pharmaceuticals and food processes.
ContributorsNugent, Emily Rose (Author) / Emady, Heather (Thesis director) / Marvi, Hamidreza (Committee member) / Materials Science and Engineering Program (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132888-Thumbnail Image.png
Description
The goal of this thesis is designing controllers for swarm robots transport a payload over inclines. Several fields of study are related to this study, including control theory, dynamic modeling and programming. MATLAB, a tool of design controller and simulation, is used in this thesis.

To achieve this goal,

The goal of this thesis is designing controllers for swarm robots transport a payload over inclines. Several fields of study are related to this study, including control theory, dynamic modeling and programming. MATLAB, a tool of design controller and simulation, is used in this thesis.

To achieve this goal, a model of swarm robots transportation should be designed, which is cruise control for this scenario. Secondly, based on free body diagram, force equilibrium equation can be deduced. Then, the function of plant can be deduced based on cruise control and force equilibrium equations. Thirdly, list potential controllers, which may implement desired controls of swarm robots, and test their performance. Modify value of gains and do simulations of these controller. After analyzing results of simulation, the best controller can be selected.

In the last section, there is conclusion of entire thesis project and pointing out future work. The section of future work will mention potential difficulties of building entire control system, which allow swarm robots transport over inclines in real environment.
ContributorsShe, Hanyu (Author) / Berman, Spring (Thesis director) / Marvi, Hamidreza (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
ContributorsJoiner, Jae (Author) / Kim, Sujin (Thesis director) / Lawson, Shawn (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of Art (Contributor)
Created2023-05
ContributorsJoiner, Jae (Author) / Kim, Sujin (Thesis director) / Lawson, Shawn (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of Art (Contributor)
Created2023-05
ContributorsJoiner, Jae (Author) / Kim, Sujin (Thesis director) / Lawson, Shawn (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of Art (Contributor)
Created2023-05
ContributorsJoiner, Jae (Author) / Kim, Sujin (Thesis director) / Lawson, Shawn (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of Art (Contributor)
Created2023-05
ContributorsJoiner, Jae (Author) / Kim, Sujin (Thesis director) / Lawson, Shawn (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of Art (Contributor)
Created2023-05
ContributorsJoiner, Jae (Author) / Kim, Sujin (Thesis director) / Lawson, Shawn (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of Art (Contributor)
Created2023-05
ContributorsJoiner, Jae (Author) / Kim, Sujin (Thesis director) / Lawson, Shawn (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of Art (Contributor)
Created2023-05
ContributorsJoiner, Jae (Author) / Kim, Sujin (Thesis director) / Lawson, Shawn (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of Art (Contributor)
Created2023-05