Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 5 of 5
Filtering by

Clear all filters

136495-Thumbnail Image.png
Description
The objective of this project concentrates on the game Defense of the Ancients 2 (Dota 2). In this game, players are constantly striving to improve their skills, which are fueled by the competitive nature of the game. The design influences the community to engage in this interaction as they play

The objective of this project concentrates on the game Defense of the Ancients 2 (Dota 2). In this game, players are constantly striving to improve their skills, which are fueled by the competitive nature of the game. The design influences the community to engage in this interaction as they play the game cooperatively. This thesis illustrates the importance of player interaction in influencing design as well as how imperative design is in affecting player interaction. These two concepts are not separate, but are deeply entwined. Every action performed within a game has to interact with some element of design. Both determine how games become defined as competitive, casual, or creative. Game designers can benefit from this study as it reinforces the basics of developing a game for players to interact with. However, it is impossible to predict exactly how players will react to a designed element. Designers should remember to tailor the game towards their audience, but also react and change the game depending on how players are using the elements of design. In addition, players should continue to push the boundaries of games to help designers adapt their product to their audience. If there is not constant communication between players and designers, games will not be tailored appropriately. Pushing the limits of a game benefits the players as well as the designers to make a more complete game. Designers do not solely create a game for the players. Rather, players design the game for themselves. Keywords: game design, player interaction, affinity space, emergent behavior, Dota 2
ContributorsLarsen, Austin James (Author) / Gee, James Paul (Thesis director) / Holmes, Jeffrey (Committee member) / Kobayashi, Yoshihiro (Committee member) / Barrett, The Honors College (Contributor) / Computing and Informatics Program (Contributor) / School of Arts, Media and Engineering (Contributor)
Created2015-05
135081-Thumbnail Image.png
Description
Last Hymn was created by the team of Tyler Pinho, Jefferson Le, and Curtis Spence with the desire to create an eccentric Role Playing Game focused on the exploration of a strange, dying world. Battles in the game are based off of rhythm games like Dance Dance Revolution using a

Last Hymn was created by the team of Tyler Pinho, Jefferson Le, and Curtis Spence with the desire to create an eccentric Role Playing Game focused on the exploration of a strange, dying world. Battles in the game are based off of rhythm games like Dance Dance Revolution using a procedural generation algorithm that makes every encounter unique. This is then complemented with the path system where each enemy has unique rhythm patterns to give them different types of combat opportunities. In Last Hymn, the player arrives on a train at the World's End Train Station where they are greeted by a mysterious figure and guided to the Forest where they witness the end of the world and find themselves back at the train station before they left for the Forest. With only a limited amount of time per cycle of the world, the player must constantly weigh the opportunity cost of each decision, and only with careful thought, conviction, and tenacity will the player find a conclusion from the never ending cycle of rebirth. Blending both Shinto architecture and modern elements, Last Hymn used a "fantasy-chic" aesthetic in order to provide memorable locations and dissonant imagery. As the player explores they will struggle against puzzles and dynamic, rhythm based combat while trying to unravel the mystery of the world's looping time. Last Hymn was designed to develop innovative and dynamic new solutions for combat, exploration, and mapping. From this project all three team members were able to grow their software development and game design skills, achieving goals like improved level design, improved asset pipelines while simultaneously aiming to craft an experience that will be unforgettable for players everywhere.
ContributorsPinho, Tyler (Co-author) / Le, Jefferson (Co-author) / Spence, Curtis (Co-author) / Nelson, Brian (Thesis director) / Walker, Erin (Committee member) / Kobayashi, Yoshihiro (Committee member) / Computer Science and Engineering Program (Contributor) / Computing and Informatics Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
135016-Thumbnail Image.png
Description
Programming is quickly becoming as ubiquitous a tool as general mathematics. The technology field is progressing at an exponential rate and driving this constantly evolving field forward requires competent software developers. Elementary and high school educational facilities do not currently express the importance of the computer science field. Computer science

Programming is quickly becoming as ubiquitous a tool as general mathematics. The technology field is progressing at an exponential rate and driving this constantly evolving field forward requires competent software developers. Elementary and high school educational facilities do not currently express the importance of the computer science field. Computer science is not a required course in high school and nearly impossible to find at a middle school level. This lack of exposure to the field at a young age handicaps aspiring developers by not providing them with a foundation to build on when seeking a degree. This paper revolves around the development of a virtual world that encompasses principles of programming in a video game structure. The use of a virtual world-based game was chosen under the hypothesis that embedding programming instruction into a game through problem-based learning is more likely to engage young students than more traditional forms of instruction. Unlike the traditional method of instruction, a virtual world allows us to "deceive" the player into learning concepts by implicitly educating them through fun gameplay mechanics. In order to make our video game robust and self-sufficient, we have developed a predictive recursive descent parser that will validate any user-generated solutions to pre-defined logical platforming puzzles. Programming topics taught with these problems range from binary numbers to while and for loops.
ContributorsWest, Grant (Co-author) / Kury, Nizar (Co-author) / Nelson, Brian (Thesis director) / Kobayashi, Yoshihiro (Committee member) / Computer Science and Engineering Program (Contributor) / Computing and Informatics Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
132302-Thumbnail Image.png
Description
The instruction of students in computer science concepts can be enhanced by creating programmable simulations and games. ASU VIPLE, which is a framework used to control simulations, robots, and for IoT applications, can be used as an educational tool. Further, the Unity engine allows the creation of 2D and 3D

The instruction of students in computer science concepts can be enhanced by creating programmable simulations and games. ASU VIPLE, which is a framework used to control simulations, robots, and for IoT applications, can be used as an educational tool. Further, the Unity engine allows the creation of 2D and 3D games. The development of basic minigames in Unity can provide simulations for students to program. One can run the Unity minigame and their corresponding VIPLE script to control them over a network connection as well as locally. The minigames conform to the robot output and robot input interfaces supported by VIPLE. With this goal in mind, a snake game, a space shooter game, and a runner game have been created as Unity simulations, which can be controlled by scripts made using VIPLE. These games represent simulated environments that, with movement output and sensor input, students can program simply and externally from VIPLE to help learn robotics and computer science principles.
ContributorsChristensen, Collin Riley (Author) / Chen, Yinong (Thesis director) / Kobayashi, Yoshihiro (Committee member) / Computer Science and Engineering Program (Contributor) / Computing and Informatics Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
130912-Thumbnail Image.png
Description
Video games often feature agents that the human player interacts with to overcome.
Designing these agents to cover every case of human interaction is difficult, and usually
imperfect, as human players are capable of learning to overcome these agents in unintended
ways. Artificial intelligence is a growing field that seeks to solve problems

Video games often feature agents that the human player interacts with to overcome.
Designing these agents to cover every case of human interaction is difficult, and usually
imperfect, as human players are capable of learning to overcome these agents in unintended
ways. Artificial intelligence is a growing field that seeks to solve problems by simulating
learning in specific environments. The aim of this paper is to explore the applications that the
self play learning branch of artificial intelligence may pose on game development in the future,
and to attempt to implement a working version of a self play agent learning to play a Pokemon
battle. Originally designed Pokemon battle behavior is often suboptimal, getting stuck making
ineffective or incorrect choices, so training a self play model to learn the strategy and structure of
Pokemon battles from a clean slate would result in an organic agent that would outperform the
original behavior of the computer controlled agents. Though unsuccessful in my implementation,
this paper serves as a record of the exploration of this field, and a log of what worked and what
did not, in order to benefit any future person interested in the same topics.
ContributorsCiudad, Erick Marcel (Author) / Meuth, Ryan (Thesis director) / Kobayashi, Yoshihiro (Committee member) / Computing and Informatics Program (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-12