Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 10 of 39
135445-Thumbnail Image.png
Description
While former New York Yankees pitcher Goose Gossage unleashed his tirade on the deterioration of the unwritten rules of baseball and nerds ruining the sport about halfway through my writing of the paper, sentiments like his were inspiration for my topic: the evolution of statistics and data in baseball. By

While former New York Yankees pitcher Goose Gossage unleashed his tirade on the deterioration of the unwritten rules of baseball and nerds ruining the sport about halfway through my writing of the paper, sentiments like his were inspiration for my topic: the evolution of statistics and data in baseball. By telling the story of how baseball data and statistics have evolved, my goal was to also demonstrate how they have been intertwined since the beginning—which would essentially mean that nerds have always been ruining the sport (if you subscribe to that kind of thought).

In the quest to showcase this, it was necessary to document how baseball prospers from numbers and numbers prosper from baseball. The relationship between the two is mutualistic. Furthermore, an all-encompassing historical look at how data and statistics in baseball have matured was a critical portion of the paper. With a metric such as batting average going from a radical new measure that posed a threat to the status quo, to a fiercely cherished statistic that was suddenly being unseated by advanced analytics, it shows the creation of new and destruction of old has been incessant. Innovators like Pete Palmer, Dick Cramer and Bill James played a large role in this process in the 1980s. Computers aided their effort and when paired with the Internet, unleashed the ability to crunch data to an even larger sector of the population. The unveiling of Statcast at the commencement of the 2015 season showed just how much potential there is for measuring previously unquantifiable baseball acts.

Essentially, there will always be people who mourn the presence of data and statistics in baseball. Despite this, the evolution story indicates baseball and numbers will be intertwined into the future, likely to an even greater extent than ever before, as technology and new philosophies become increasingly integrated into front offices and clubhouses.
ContributorsGarcia, Jacob Michael (Author) / Kurland, Brett (Thesis director) / Doig, Stephen (Committee member) / Jackson, Victoria (Committee member) / Walter Cronkite School of Journalism and Mass Communication (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
133404-Thumbnail Image.png
Description
This research aims to look at the lower level collegiate athletics, Intramural sports and club sports, in comparison to Division 1 varsity athletics to see how their sport lives differ and why they are still competing when the reward does not seem as grand as the Varsity athletics. The findings

This research aims to look at the lower level collegiate athletics, Intramural sports and club sports, in comparison to Division 1 varsity athletics to see how their sport lives differ and why they are still competing when the reward does not seem as grand as the Varsity athletics. The findings show that the socially ingrained aspect of sports is the reason that most lower level athletes keep competing.
ContributorsHarvey, Abigail (Author) / Jonsson, Hjorleifur (Thesis director) / Jackson, Victoria (Committee member) / School of Human Evolution and Social Change (Contributor) / W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
132838-Thumbnail Image.png
Description
The purpose of this research is to optically characterize germanium-based chalcogenide thin films and evaluate how their properties change when the composition is altered. The composition changes based on if the chalcogenide contains selenium or sulfur, if the film is 60 nanometers or 200 nanometers, and if the film is

The purpose of this research is to optically characterize germanium-based chalcogenide thin films and evaluate how their properties change when the composition is altered. The composition changes based on if the chalcogenide contains selenium or sulfur, if the film is 60 nanometers or 200 nanometers, and if the film is doped with silver (ranging from 0 nanometers to 30 nanometers). These amorphous germanium-chalcogenide thin films exhibit interesting properties when doped with silver, such as transporting ions within the film in addition to electron transport. Using optical characterization techniques such as UV-Vis spectroscopy, profilometry, and ellipsometry, parameters that describe the optical characteristics are found, including the absorption coefficient, refractive index, optical band gap energy, and information on the density of states. This research concludes that as silver content within the film increases, the optical bandgap energy decreases—this is a consistent trend in existing literature. Having a better understanding of the materials’ physical properties will be useful to aid in the creation of microsystems based on these materials by selecting optimal composition and growth conditions. Important applications using these materials are currently being researched, including variable capacitor devices relying on the ionic conductor behavior these materials display. The optical properties like the absorption coefficient and the optical bandgap energy are invaluable in designing these applications effectively.
ContributorsRicks, Amberly Frances (Author) / Gonzalez Velo, Yago (Thesis director) / Kozicki, Michael (Committee member) / Holman, Zachary (Committee member) / Electrical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
134676-Thumbnail Image.png
Description
Having the proper biomechanical and neuromuscular kinematics while performing an athletic motion is essential for athletes. Deviations from proper form in execution of the kinetic chain of an athletic movement may result in suboptimal performance and oftentimes an elevated likelihood of injury. The solutions currently available to athletes to account

Having the proper biomechanical and neuromuscular kinematics while performing an athletic motion is essential for athletes. Deviations from proper form in execution of the kinetic chain of an athletic movement may result in suboptimal performance and oftentimes an elevated likelihood of injury. The solutions currently available to athletes to account for digression from proper form are limited to sight and feel analysis of movement by the athletes and coaches and basic medical and athletic analysis equipment that is unsuitable for real-time analysis, the rigor and speed of dynamic athletic motions, and in-field use. The solution proposed herein is one of an in-shoe force measurement and foot positioning system designed to measure the ground reaction force generated by and alignment of an athlete's feet during an athletic motion. Research into various sports has found that the feet play a foundational role in proper execution of the kinetic chain, wherein the alignment, positioning, force generation, and timing of the feet may dictate proper execution of subsequent segments in the kinetic chain. The goal of the present design is to provide athletes with a solution to allow for real-time kinematic analysis of athletic motions using an in-shoe force measurement and foot positioning system. An understanding into the compensatory effect of foot misalignment, mismatched timing, and under or overcompensated ground reaction force generation by the feet on ensuing segments of the kinetic chain in conjunction with the present design can allow for athletes to measure and determine their degree of accuracy in form execution and to predict potential injuries resulting from deviations in form. Our design of an athletic shoe comprising an in-shoe force measurement system provides a dynamic solution to sports-related injuries presently unavailable to athletes.
ContributorsKiaei, Nima (Co-author) / Makhija, Abhay (Co-author) / Kiaei, Sayfe (Thesis director) / Kozicki, Michael (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134332-Thumbnail Image.png
Description
The Solar Powered Amphibious Transport (SPAT) is an amphibious hovercraft that uses solar energy as a power source and is fully controlled via iOS application on a phone or tablet. The hovercraft field is relatively unexplored with a solar power source, and one of the goals of the SPAT was

The Solar Powered Amphibious Transport (SPAT) is an amphibious hovercraft that uses solar energy as a power source and is fully controlled via iOS application on a phone or tablet. The hovercraft field is relatively unexplored with a solar power source, and one of the goals of the SPAT was to spark interest in sustainable hovercraft design. By challenging the potential of solar power, the SPAT proves that solar energy can be used in high power transportation applications. The second motive behind the creation a hovercraft was for it to serve as a disaster relief vehicle. A hovercraft can traverse both ground and water, which makes it ideal in flooded areas. With the SPAT being remote controlled it can allow the operator to stay at a safe distance while sending supplies or rescuing a person. The SPAT design covered multiple size options, however a small prototype version was built to serve as a proof of concept that a larger solar hovercraft is possible. Our analysis suggests that a larger craft will be able to carry more weight, and be more power efficient. A larger SPAT could help deliver supplies or rescue stranded people after a flood or hurricane. One issue faced however, was that many hovercrafts are highly expensive. The SPAT prototype was designed on a tight budget that did not exceed $800. The possibility of achieving this cost levels allows hovercraft to be a reasonable option for disaster relief agencies. After many long hours spent the SPAT became a fully operational remote control solar powered hovercraft.
ContributorsDavis, Parker William (Co-author) / Clenney, Jacob (Co-author) / Nachman, Michael (Co-author) / Melillo, Nick (Co-author) / Bertoni, Mariana (Thesis director) / Kozicki, Michael (Committee member) / Electrical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134357-Thumbnail Image.png
Description
Year after year, babies are dying after being left behind in cars that reach dangerous levels of heat. This project, conducted by the Hot Babies Senior Design Team, aims to solve this growing issue with the development of a hot car baby monitor. This device is integrated with multiple sensors:

Year after year, babies are dying after being left behind in cars that reach dangerous levels of heat. This project, conducted by the Hot Babies Senior Design Team, aims to solve this growing issue with the development of a hot car baby monitor. This device is integrated with multiple sensors: temperature, sound, carbon dioxide, and motion in order to detect life inside of a hot car. By using different sensors, a combination of threshold activated signals can be used to provide high quality monitoring and reduce false alarms from outside noise. Once the algorithms predict the presence of a living being inside a dangerously hot vehicle, the baby car monitor will send out text messages warning designated parents and/or guardians of the issue. The baby car monitor is further optimized with a low battery indicator and a sleep mode feature. The schedule of the project is separated into the fall and spring semesters. For the fall semester, all of the sensors and the microcontroller were purchased and tested individually. For the spring semester, all of the sensors were integrated together on a PCB and tested under hot car environments. Additionally, features such as the text messaging interface and the sleep mode were added. The budget of the final working product is roughly ~ $200. The cost includes the different sensors, microcontroller, data plan, text messaging module, and PCB. When mass produced, the cost is expected to go down.
ContributorsQin, Eric C (Co-author) / Luc, Andrew (Co-author) / Cheung, Wai (Co-author) / Moore, Jenna (Co-author) / Vittal, Vijay (Thesis director) / Kozicki, Michael (Committee member) / Electrical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
Description
Battle For Arizona Avenue: The History of the Chandler-Hamilton Rivalry is an honors thesis project that aims to serve as a historical hub for the two schools involved. Chandler and Hamilton High School are two public high schools in Chandler, Ariz., who are among the most successful football programs in

Battle For Arizona Avenue: The History of the Chandler-Hamilton Rivalry is an honors thesis project that aims to serve as a historical hub for the two schools involved. Chandler and Hamilton High School are two public high schools in Chandler, Ariz., who are among the most successful football programs in the state despite sitting just 3.8 miles apart from each other. The thesis is housed on a multimedia website, which uses written pieces, photos, videos and other multimedia elements to break down the history of both programs. Chandler is one of the oldest schools in the state, opening in 1914 and often lagging athletically until large population growth led to Hamilton opening in 1998. Hamilton experienced immediate success both as a football program individually and in the rivalry, taking the first 17 match ups between the two schools and winning seven titles in the now 18 years they have been in existence. Chandler has since come and shifted the tide, winning five of the last six games in the rivalry and claiming two titles in the last three years. It's rare for two programs so close in proximity to have so much success not just on the football field but academically, so the thesis looked at the various reasons why. The thesis is about more than just the two schools, however. It dives into what a rivalry means, as well as the overall impact of high school football and the various factors that led into this meaning as much to people as it did. The website should serve as a vital historical device for each school in years to come, with there still being the ability for growth in years to come. https://medium.com/the-battle-for-arizona-avenue
ContributorsArdaya, Fabian (Author) / Kurland, Brett (Thesis director) / Jackson, Victoria (Committee member) / Hawken-Collins, Denise (Committee member) / Walter Cronkite School of Journalism and Mass Communication (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
135157-Thumbnail Image.png
Description
This document introduces the need for the Rest Egg system and defines an accessible method of smartphone integration. Excessive noise can prevent recovering patients and special needs persons from resting correctly. The Rest Egg was designed for these people- people who are in critical need of quality rest but are

This document introduces the need for the Rest Egg system and defines an accessible method of smartphone integration. Excessive noise can prevent recovering patients and special needs persons from resting correctly. The Rest Egg was designed for these people- people who are in critical need of quality rest but are often unable to eliminate stressors themselves. This system ensures their environment is calm by alerting caretakers' smartphones if noise reaches abrasive levels. Smartphones were the preferred device due to the wide spread of such devices in today's market. After making open sourcing a goal, something ubiquitous and affordable \u2014 yet usable and dependable \u2014 was necessary for the alert system. These requirements lead to the election an online alert service: Pushover, a trademark and product of Superblock, LLC.
ContributorsJennings, Tyler Blake (Author) / Goryll, Michael (Thesis director) / Kozicki, Michael (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2016-05
135736-Thumbnail Image.png
Description
The Built-In Self-Test for Simultaneous Transmit and Receive (BIST for STAR) will be able to solve the challenges of transmitting and receiving at the same time at the same frequency. One of the major components is the STAR antenna which transmits and receives along the same pathway. The main problem

The Built-In Self-Test for Simultaneous Transmit and Receive (BIST for STAR) will be able to solve the challenges of transmitting and receiving at the same time at the same frequency. One of the major components is the STAR antenna which transmits and receives along the same pathway. The main problem with doing both on the same path is that the transmit signal is usually much stronger in power compared to the received signal. The transmit signal has echoes and leakages that cause self-interference, preventing the received signal from being properly obtained. The solution developed in this project is the BIST component, which will help calculate the functional gain and phase offset of the interference signal and subtract it from the pathway so that the received signal remains. The functions of the proposed circuit board can be modeled in Matlab, where an emulation code generates a random, realistic functional gain and delay for the interference. From the generated values, the BIST for STAR was simulated to output what the measurements would be given the strength of the input signal and a controlled delay. The original Matlab code models an ideal environment directly recalculating the functional gain and phase from the given measurements in a second Matlab script. The actual product will not be ideal; a possible source of error to be considered is the effect of thermal noise. To observe the effect of noise on the BIST for STAR's performance, the Matlab code was expanded upon to include a component for thermal noise, and a method of analyzing the results of the board.
ContributorsLiu, Jennifer Yuan (Author) / Ozev, Sule (Thesis director) / Kozicki, Michael (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135759-Thumbnail Image.png
Description
The apparent phenomenon of the human eye retaining images for fractions of a second after the light source has gone is known as Persistence of Vision. While its causes are not fully understood, it can be taken advantage of in order to create illusions which trick the mind into perceiving

The apparent phenomenon of the human eye retaining images for fractions of a second after the light source has gone is known as Persistence of Vision. While its causes are not fully understood, it can be taken advantage of in order to create illusions which trick the mind into perceiving something which, in actuality, is very different from what the mind portrays. It has motivated many creative engineering technologies in the past and is the core for how we perceive motion in movies and animations. This project applies the persistence of vision concept to a lesser explored medium; the wheel of a moving bicycle. The motion of the wheel, along with intelligent control of discrete LEDs, create vibrant illusions of solid lines and shapes. These shapes make up the image to be displayed on the bike wheel. The rotation of the bike wheel can be compensated for in order to produce a standing image (or images) of the user's choosing. This thesis details how the mechanism for conducting the individual LEDs was created in order to produce a device which is capable of delivering colorful, standing images of the user's choosing.
ContributorsSaltwick, Ian Mark (Author) / Goryll, Michael (Thesis director) / Kozicki, Michael (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05