Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 10 of 35
135187-Thumbnail Image.png
Description
Transient Receptor Potential (TRP) ion channels are a diverse family of nonselective, polymodal sensors in uni- and multicellular eukaryotes that are implicated in an assortment of biological contexts and human disease. The cold-activated TRP Melastatin-8 (TRPM8) channel, also recognized as the human body's primary cold sensor, is among the few

Transient Receptor Potential (TRP) ion channels are a diverse family of nonselective, polymodal sensors in uni- and multicellular eukaryotes that are implicated in an assortment of biological contexts and human disease. The cold-activated TRP Melastatin-8 (TRPM8) channel, also recognized as the human body's primary cold sensor, is among the few TRP channels responsible for thermosensing. Despite sustained interest in the channel, the mechanisms underlying TRPM8 activation, modulation, and gating have proved challenging to study and remain poorly understood. In this thesis, I offer data collected on various expression, extraction, and purification conditions tested in E. Coli expression systems with the aim to optimize the generation of a structurally stable and functional human TRPM8 pore domain (S5 and S6) construct for application in structural biology studies. These studies, including the biophysical technique nuclear magnetic spectroscopy (NMR), among others, will be essential for elucidating the role of the TRPM8 pore domain in in regulating ligand binding, channel gating, ion selectively, and thermal sensitivity. Moreover, in the second half of this thesis, I discuss the ligation-independent megaprimer PCR of whole-plasmids (MEGAWHOP PCR) cloning technique, and how it was used to generate chimeras between TRPM8 and its nearest analog TRPM2. I review steps taken to optimize the efficiency of MEGAWHOP PCR and the implications and unique applications of this novel methodology for advancing recombinant DNA technology. I lastly present preliminary electrophysiological data on the chimeras, employed to isolate and study the functional contributions of each individual transmembrane helix (S1-S6) to TRPM8 menthol activation. These studies show the utility of the TRPM8\u2014TRPM2 chimeras for dissecting function of TRP channels. The average current traces analyzed thus far indicate that the S2 and S3 helices appear to play an important role in TRPM8 menthol modulation because the TRPM8[M2S2] and TRPM8[M2S3] chimeras significantly reduce channel conductance in the presence of menthol. The TRPM8[M2S4] chimera, oppositely, increases channel conductance, implying that the S4 helix in native TRPM8 may suppress menthol modulation. Overall, these findings show that there is promise in the techniques chosen to identify specific regions of TRPM8 crucial to menthol activation, though the methods chosen to study the TRPM8 pore independent from the whole channel may need to be reevaluated. Further experiments will be necessary to refine TRPM8 pore solubilization and purification before structural studies can proceed, and the electrophysiology traces observed for the chimeras will need to be further verified and evaluated for consistency and physiological significance.
ContributorsWaris, Maryam Siddika (Author) / Van Horn, Wade (Thesis director) / Redding, Kevin (Committee member) / School of Molecular Sciences (Contributor) / Department of English (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136305-Thumbnail Image.png
Description
The objective of this randomized, single-blind crossover study was to examine the effect of vinegar on the blood glucose response to meal ingestion. This study was associated with a companion study Is Apple Cider Vinegar Effective for Reducing Heartburn Symptoms Related to Gastroesophageal Reflux Disease. Glucose meters were

The objective of this randomized, single-blind crossover study was to examine the effect of vinegar on the blood glucose response to meal ingestion. This study was associated with a companion study Is Apple Cider Vinegar Effective for Reducing Heartburn Symptoms Related to Gastroesophageal Reflux Disease. Glucose meters were utilized to measure blood glucose levels immediately prior to, and at four ½ hour intervals following meal ingestion. Previous studies have demonstrated that vinegar modulates the meal-time glucose response. Hence an alternative hypothesis was used: that a significant difference will be observed between the control and the vinegar groups. The results from the study were not significant likely due to a small sample size. The test meal eaten with a drink composed of vinegar diluted in water appeared to be most effective at decreasing the overall change in postprandial blood glucose. The vinegar drink also played a role in decreasing the peak glucose level at 30 minutes post-meal.
ContributorsPadgitt-Cobb, Lillian Katelyn (Author) / Johnston, Carol (Thesis director) / Redding, Kevin (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2015-05
136214-Thumbnail Image.png
Description
In my thesis paper, I examine the gothic elements found in classical gothic fairy tales from European and Japanese tradition, particularly those works by the Brothers Grimm and Yei Theodora Ozaki. By examining the principle gothic elements that are unique to both stories, and further analyzing the commonalities of story,

In my thesis paper, I examine the gothic elements found in classical gothic fairy tales from European and Japanese tradition, particularly those works by the Brothers Grimm and Yei Theodora Ozaki. By examining the principle gothic elements that are unique to both stories, and further analyzing the commonalities of story, plot, and other major tropes, a better understanding of the message meant to be imparted and other cultural nuances can be ascertained. Gothic literature creates an atmosphere of gloom and suspense, toying with concepts of dread and darkness by employing Gothic elements such as shadows, the supernatural, sinister buildings, and strong-willed villains, all of which affect the rational mind in an irrational way. Fairytales freely use such tropes to their advantage, playing with the many fears of children, while simultaneously painting an idealistic fantasy world. The degree of usage and the application of gothic elements is closely examined in the Grimm works, "Hansel and Gretel," and "The Robber Bridegroom," as well as the Japanese tales, "The Goblin of Adachigahra,""Kintaro the Golden Boy" and "The Monkey and the Crab." These stories have been chosen due for their usage of animal tricksters, themes of control, and aspects of isolation, supernatural entities, and substantial gothic imagery. The gothic elements of death, sinister older women, the supernatural, fears of abandonment, and cunning animals are akin to both Western and Eastern tales, while the concept of gothic setting and the type of monsters prepared to feast on men is significantly different for both cultures, similar lessons are intended to be gleaned by children from these tales, with the intention of generally producing positive results \u2014 while the means differ, the message is strikingly similar, yet there remain cultural differences in terms of central themes and character traits.The effect of re-introducing the darker, gothic elements of traditional fairy tales into modern literature and retellings of the original narratives has been profound.Today, whether it has been at the bequest of the public or simply a new-age movement by modern cinema audience for the "gritty and realistic," fairy tales are returning to their former gothic forms. "Snow White and The Huntsman" is one example of a film which has gone this route, opting for a more gothic, classic telling rather than the chip, cheery, rosy cheeked Disney versions. There is a tendency for most media nowadays to be far less censored and fantastical, aiming for a more realistic, grittier approach \u2014 this bleeds into film and literature likewise, and thus children are impacted by this shift as well. Children seem to be able to handle more, perhaps desensitized at younger and younger ages by the products of our widely consumerist society, or perhaps due to parents raising their children in such a way so that the darkness that tinges these tales doesn't disturb and derail but rather, emphasizes their meaning of teaching certain lessons. Tales such as these are still valuable, and will continue to be so long as we seek a reality greater than our own, where the evil of the world is wiped away, and we all live happily ever after.
ContributorsMoschonas, Jerasimos Theodore (Author) / Ellis, Lawrence (Thesis director) / Hoyt, Heather (Committee member) / Barrett, The Honors College (Contributor) / Department of English (Contributor)
Created2015-05
136921-Thumbnail Image.png
Description
Photosynthesis is a critical process that fixes the carbon utilized in cellular respiration. In higher plants, the immutans gene codes for a protein that is both involved in carotenoid biosynthesis and plastoquinol oxidation (Carol et al 1999, Josse et al 2003). This plastoquinol terminal oxidase (PTOX) is of great interest

Photosynthesis is a critical process that fixes the carbon utilized in cellular respiration. In higher plants, the immutans gene codes for a protein that is both involved in carotenoid biosynthesis and plastoquinol oxidation (Carol et al 1999, Josse et al 2003). This plastoquinol terminal oxidase (PTOX) is of great interest in understanding electron flow in the plastoquinol pool. In order to characterize this PTOX, polyclonal antibodies were developed. Expression of Synechococcus WH8102 PTOX in E. coli provided a useful means to harvest the protein required for antibody production. Once developed, the antibody was tested for limit of concentration, effectiveness in whole cell lysate, and overall specificity. The antibody raised against PTOX was able to detect as low as 10 pg of PTOX in SDS-PAGE, and could detect PTOX extracted from lysed Synechococcus WH8102. The production of this antibody could determine the localization of the PTOX in Synechococcus.
ContributorsKhan, Mohammad Iqbal (Author) / Moore, Thomas (Thesis director) / Redding, Kevin (Committee member) / Roberson, Robert (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Life Sciences (Contributor)
Created2014-05
133471-Thumbnail Image.png
Description
Higher plant Rubisco activase (Rca) is a stromal ATPase responsible for reactivating Rubisco. It is a member of the AAA+ protein superfamily and is thought to assemble into closed-ring hexamers like other AAA+ proteins belonging to the classic clade. Progress towards modeling the interaction between Rca and Rubisco has been

Higher plant Rubisco activase (Rca) is a stromal ATPase responsible for reactivating Rubisco. It is a member of the AAA+ protein superfamily and is thought to assemble into closed-ring hexamers like other AAA+ proteins belonging to the classic clade. Progress towards modeling the interaction between Rca and Rubisco has been slow due to limited structural information on Rca. Previous efforts in the lab were directed towards solving the structure of spinach short-form Rca using X-ray crystallography, given that it had notably high thermostability in the presence of ATP-γS, an ATP analog. However, due to disorder within the crystal lattice, an atomic resolution structure could not be obtained, prompting us to move to negative stain electron microscopy (EM), with our long-term goal being the use of cryo-electron microscopy (cryo-EM) for atomic resolution structure determination. Thus far, we have screened different Rca constructs in the presence of ATP-γS, both the full-length β-isoform and truncations containing only the AAA+ domain. Images collected on preparations of the full-length protein were amorphous, whereas images of the AAA+ domain showed well-defined ring-like assemblies under some conditions. Procedural adjustments, such as the use of previously frozen protein samples, rapid dilution, and minimizing thawing time were shown to improve complex assembly. The presence of Mn2+ was also found to improve hexamer formation over Mg2+. Calculated class averages of the AAA+ Rca construct in the presence of ATP-γS indicated a lack of homogeneity in the assemblies, showing both symmetric and asymmetric hexameric rings. To improve structural homogeneity, we tested buffer conditions containing either ADP alone or different ratios of ATP-γS to ADP, though results did not show a significant improvement in homogeneity. Multiple AAA+ domain preparations were evaluated. Because uniform protein assembly is a major requirement for structure solution by cryo-EM, more work needs to be done on screening biochemical conditions to optimize homogeneity.
ContributorsHernandez, Victoria Joan (Author) / Wachter, Rebekka (Thesis director) / Chiu, Po-Lin (Committee member) / Redding, Kevin (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133089-Thumbnail Image.png
Description
Antiviral lectins are potential candidates for future therapies against enveloped viruses like HIV due to their ability to recognize and bind glycans displayed on their surface. Cyanovirin-N (CVN), a lectin that specifically recognizes mannose-rich moieties, serves as a useful model for studying these glycan-recognition mechanisms. This study seeks to improve

Antiviral lectins are potential candidates for future therapies against enveloped viruses like HIV due to their ability to recognize and bind glycans displayed on their surface. Cyanovirin-N (CVN), a lectin that specifically recognizes mannose-rich moieties, serves as a useful model for studying these glycan-recognition mechanisms. This study seeks to improve CVN's glycan-binding affinity by conjugating a boronic acid functional group to the N-terminus via N-terminal specific reductive alkylation by way of a benzaldehyde handle. However, large discrepancies were observed when attempting to confirm a successful conjugation, and further work is necessary to identify the causes and solutions for these issues.
ContributorsDiep, Tristan H (Author) / Ghirlanda, Giovanna (Thesis director) / Redding, Kevin (Committee member) / Mills, Jeremy (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
133991-Thumbnail Image.png
Description
The novella Flicker by Rachel Ponstein is a climate fiction story. It draws influence from the post-apocalyptic and dystopian genres as well as classic gothic literature. The story utilizes elements of gothic literature including Freud's Uncanny, uneven framing, and bildungsroman. It also utilizes subhuman species to incite conversation about the

The novella Flicker by Rachel Ponstein is a climate fiction story. It draws influence from the post-apocalyptic and dystopian genres as well as classic gothic literature. The story utilizes elements of gothic literature including Freud's Uncanny, uneven framing, and bildungsroman. It also utilizes subhuman species to incite conversation about the importance of perspective and the use of an alternative lens on the post-Reckoning world. The disaster story is ambiguous to focus the reader on the importance of the characters and their progress throughout the journey rather than the overall plotline. The analysis below serves as an explanation for the intentional decisions made to fit a sub-genre and engage the reader in an intellectual conversation about the issues broached.
ContributorsPonstein, Rachel Kay (Author) / Fette, Donald (Thesis director) / Hoyt, Heather (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134989-Thumbnail Image.png
Description
The FoF1 ATP synthase is a molecular motor critical to the metabolism of virtually all life forms, and it acts in the manner of a hydroelectric generator. The F1 complex contains an (αβ)3 (hexamer) ring in which catalysis occurs, as well as a rotor comprised by subunit-ε in addition to

The FoF1 ATP synthase is a molecular motor critical to the metabolism of virtually all life forms, and it acts in the manner of a hydroelectric generator. The F1 complex contains an (αβ)3 (hexamer) ring in which catalysis occurs, as well as a rotor comprised by subunit-ε in addition to the coiled-coil and globular foot domains of subunit-γ. The F1 complex can hydrolyze ATP in vitro in a manner that drives counterclockwise (CCW) rotation, in 120° power strokes, as viewed from the positive side of the membrane. The power strokes that occur in ≈ 300 μsec are separated by catalytic dwells that occur on a msec time scale. A single-molecule rotation assay that uses the intensity of polarized light, scattered from a 75 × 35 nm gold nanorod, determined the average rotational velocity of the power stroke (ω, in degrees/ms) as a function of the rotational position of the rotor (θ, in degrees, measured in reference to the catalytic dwell). The velocity is not constant but rather accelerates and decelerates in two Phases. Phase-1 (0° - 60°) is believed to derive power from elastic energy in the protein. At concentrations of ATP that limit the rate of ATP hydrolysis, the rotor can stop for an ATP-binding dwell during Phase-1. Although the most probable position that the ATP-binding dwell occurs is 40° after the catalytic dwell, the ATP-binding dwell can occur at any rotational position during Phase-1 of the power stroke. Phase-2 of the power stroke (60° - 120°) is believed to be powered by the ATP-binding induced closure of the lever domain of a β-subunit (as it acts as a cam shaft against the γ-subunit). Algorithms were written, to sort and analyze F1-ATPase power strokes, to determine the average rotational velocity profile of power strokes as a function of the rotational position at which the ATP-binding dwell occurs (θATP-bd), and when the ATP-binding dwell is absent. Sorting individual ω(θ) curves, as a function of θATP-bd, revealed that a dependence of ω on
θATP-bd exists. The ATP-binding dwell can occur even at saturating ATP concentrations. We report that ω follows a distinct pattern in the vicinity of the ATP-binding dwell, and that the ω(θ) curve contains the same oscillations within it regardless of θATP-bd. We observed that an acceleration/deceleration dependence before and after the ATP-binding dwell, respectively, remained for increasing time intervals as the dwell occurred later in Phase-1, to a maximum of ≈ 40°. The results were interpreted in terms of a model in which the ATP-binding dwell results from internal drag at a variable position on the γε rotor.
ContributorsBukhari, Zain Aziz (Author) / Frasch, Wayne D. (Thesis director) / Allen, James P. (Committee member) / Redding, Kevin (Committee member) / School of Molecular Sciences (Contributor) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
135179-Thumbnail Image.png
Description
The goal of this investigation was to perform a correlational analysis of the intelligence mindsets, motivational background, and significance of gender identity as factors driving student success. 42 students enrolled in Computer Science and Engineering (CSE) 110: Principles of Programming with Java completed a modified Scientific Measurement Questionnaire (SMQ), a

The goal of this investigation was to perform a correlational analysis of the intelligence mindsets, motivational background, and significance of gender identity as factors driving student success. 42 students enrolled in Computer Science and Engineering (CSE) 110: Principles of Programming with Java completed a modified Scientific Measurement Questionnaire (SMQ), a survey instrument designed to study the previously mentioned factors. This survey was modeled on a similar survey administered by Dr. Ian Gould to students enrolled in his Organic Chemistry course at Arizona State University. Following the development of a scoring system to generate quantifiable data, it was determined that students in this course displayed a greater inclination towards beliefs in malleable intelligence and in an intrinsic locus of control as opposed to a belief in static intelligence and an external locus of control. Students exhibited a multi-faceted approach in responding to the questions in the motivational background section, indicating that there were no distinctively dominating factors driving student motivation. Instead, it was observed that students generally derived motivation from these factors in a synergistic fashion. Responses to questions regarding gender indicated that while students believed that the way they were perceived by others was significantly influenced by their gender, the notion of gender identity played little to no role in their overall personal identity and self-schema. As the study was designed to offer insight into the role of gender identity and the population discrepancies within the course, it is important to note that the findings suggest gender identity is not a primary factor of concern with regard to student performance. While the data acquired suggested potential trends in student mindsets, a notable limitation of the scope of the project was the undersized sample population.
ContributorsLevinthal, Ryan (Co-author) / Santos, Cedric (Co-author) / Gould, Ian (Thesis director) / Redding, Kevin (Committee member) / School of Molecular Sciences (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
137801-Thumbnail Image.png
DescriptionThe thesis is based on the process of planning, creating, and implementing an in-home K-12th grade tutoring company that provides a tutoring service where students are aided in academic and lifetime success. The business model also contains detailed plans on how it expects to expand nationwide.
ContributorsVanDuzer, Todd (Author) / Samper, Adriana (Committee member) / Hoyt, Heather (Committee member) / Barrett, The Honors College (Contributor) / W. P. Carey School of Business (Contributor)
Created2012-12