Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 1 of 1
Filtering by

Clear all filters

134210-Thumbnail Image.png
Description
Transient Receptor Potential Melastatin 8 (TRPM8) is a non-selective cation channel notable as a primary cold sensor in humans. It is also involved in a variety of (patho)physiological events including pain sensation, chronic cough, diabetes, obesity, and cancer. TRPM8 is modulated by a variety of stimuli including pH, temperature, cooling

Transient Receptor Potential Melastatin 8 (TRPM8) is a non-selective cation channel notable as a primary cold sensor in humans. It is also involved in a variety of (patho)physiological events including pain sensation, chronic cough, diabetes, obesity, and cancer. TRPM8 is modulated by a variety of stimuli including pH, temperature, cooling agents, voltage, lipid, and other proteins. However, the molecular mechanism underlining its function has not yet clear raising the need for isolated proteins to be well-characterized. Over 20 years, E. coli has been a heterologous expression system of interest due to its low cost and high yield. However, the lack of post-translational modifications and chaperone may cause a misfolding or affect protein function. Mammalian expression system addresses these drawbacks and is a good candidate for the functional study of complex human protein. Here I describe my research in optimizing the transfection, expression, and purification of the human TRPM8 from adherent Human Embryonic Kidney (HEK293) cells which can be used for small-scale studies including, but not limited to, planar lipid bilayer electrophysiology.
ContributorsNguyen, Hoang Phuong My (Author) / Van Horn, Wade (Thesis director) / Wang, Xu (Committee member) / Hilton, Jacob (Committee member) / School of Life Sciences (Contributor) / School of Molecular Sciences (Contributor) / Computing and Informatics Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12