Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 10 of 76
136095-Thumbnail Image.png
Description
In response to the modern discussion of secondary education reform, a design is proposed for a decentralized high school composed of hybridized learning centers which respond to a pedagogy of Resource Based Learning and appropriate the Valley Metro Light Rail Line as the site network. In pursuit of symbiotic public/private

In response to the modern discussion of secondary education reform, a design is proposed for a decentralized high school composed of hybridized learning centers which respond to a pedagogy of Resource Based Learning and appropriate the Valley Metro Light Rail Line as the site network. In pursuit of symbiotic public/private relationships, the project offers a broad avenue of access to a diverse array of students and resources. The working design ultimately visualizes a radical potential for the classroom of the 21st century.
ContributorsLufkin, Angela Marie (Author) / Horton, Phil (Thesis director) / Hejduk, Renata (Committee member) / Barrett, The Honors College (Contributor) / The Design School (Contributor)
Created2015-05
136096-Thumbnail Image.png
Description
Major cities in the US such as Los Angeles, New York, and Chicago have a rich cultural hub within the realm of central business district known as the Chinatown where large Chinese communities reside. These districts are usually located in or around the neighborhoods where the first Chinese immigrants settled.

Major cities in the US such as Los Angeles, New York, and Chicago have a rich cultural hub within the realm of central business district known as the Chinatown where large Chinese communities reside. These districts are usually located in or around the neighborhoods where the first Chinese immigrants settled. Though Phoenix has had a Chinese community since the mid-nineteenth century, the historic and contemporary community is represented by a commercial retail center which is distant from the sites where the initial immigrants resided. Using a both textual and mapping research I explored the history of the development of Phoenix and contributions which Chinese culture made to the process. In the course of my research I learned that city of Phoenix not only had one Chinatown but two Chinatowns. My project examines the influence of Chinese culture on the urban development of Phoenix throughout history and contemporary era and reintroduces the presence of this community within the urban context of Phoenix through the creation of a cultural center. Political unrest in the Guangdong region in Southern China during the 1870s combined with both the California Gold Rush (1848 - 1850 and the construction of transcontinental railroad (1864 - 1869) led to the migration of Chinese citizens to the United States. Many of these immigrants migrated to the Valley after working at the transcontinental railroad construction near the Salt River Valley area. The first Chinese immigrants, three men and two women arrived in Phoenix I n 1872. The community remained rather small until 1879 when the transcontinental railroad construction along Salt River valley stopped due to extreme summer weather which led to the establishment of the First Chinatown in 1889. According to the old insurance Sanborn map, the first Chinatown in Phoenix was established along first and Adam street with diversified businesses such as laundries groceries, and restaurants. The Chinese community in the city was pretty small compared to other ethnic group settlements. Racial segregation was one of the major issues that caused the shift of First Chinatown from its original location to first and Madison Street and the Second Chinatown emerged in 1901. Post WWII, suburban sprawl and development of model single family detached homes were some of the reasons that led to disappearance of Chinatown in downtown Phoenix. In order to deliver this information and educate the public about the existence of Chinatown and the culture, I developed the concept of merging history and the 21st Century ideals by creating a place where Chinese culture is being reintroduced to Phoenix community. My design proposal for this issue is to construct a museum that is mainly focused upon historical Chinese Immigration to Phoenix and a cultural center that promotes Chinese culture, art, literature, merchandise, and cuisine in a way to reconnect mainland China and the city of Phoenix in 21st Century.
ContributorsLin, Aung Tun (Author) / Barton, Craig (Thesis director) / Hejduk, Renata (Committee member) / Belcher, Nathaniel (Committee member) / Barrett, The Honors College (Contributor) / The Design School (Contributor)
Created2015-05
136106-Thumbnail Image.png
Description
Violence in schools occurs throughout America, prevalent to the point of daily happenstance. The epidemic of violence in our society is in sore need of healing efforts. Ending Bullying with Multiple Architectures focuses on the violence of bullying in young children and adolescents, in an effort to mitigate bullying at

Violence in schools occurs throughout America, prevalent to the point of daily happenstance. The epidemic of violence in our society is in sore need of healing efforts. Ending Bullying with Multiple Architectures focuses on the violence of bullying in young children and adolescents, in an effort to mitigate bullying at a critical age, before it transcends into their adult behavior. Bullying begins in elementary schools, a time when our minds are extremely impressionable and our behavioral habits take birth. Bullying may happen for a certain segment of a person's life, but the effects transcend a person's entire life. People who bully may follow a familial cycle of bullying and people who are bullied may become bullies and start a new cycle. With bullying and aggressive behavior increasing exponentially in schools, our society is growing up in a place where it is acceptable to react aggressively to stressful or undesirable situations. Today, violence in our society infiltrates every aspect of our lives, from road rage, to grocery store quarrels, to family ties breaking, to gun violence in school and public spaces. Unplanned acts of violence occur in "spur of the moments". Is our society so impatient, aggressive, antagonistic, individualistic, and isolated because we have been conditioned as human beings to behave this way? Did we miss our chance to work cordially as a community, peacefully and patiently, because we put progress and productivity in front of community and collaboration? How can architecture slow you down, keep you aware of your surroundings and facilitate collaboration and getting along? Why do we accept abrupt anger and violence, and how can architecture create, improve or encourage positive behavioral habits in our impressionable young minds? Ending Bullying with Multiple Architectures translates existing bullying strategies (social architecture) into physical architectural intervention, in an effort to mitigate bullying at the critical age when behavioral habits take birth. This project challenges efficiency based design in order to complement the human experience. By creating healthier spaces that foster wholeness, we can heal violence at this critical age, and thus hopefully reduce future societal violence as a whole.
ContributorsRaghani, Divya Nikita (Author) / Shraiky, James (Thesis director) / Hejduk, Renata (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor) / The Design School (Contributor) / School of Social and Behavioral Sciences (Contributor)
Created2015-05
136546-Thumbnail Image.png
Description
The generation of walking motion is one of the most vital functions of the human body because it allows us to be mobile in our environment. Unfortunately, numerous individuals suffer from gait impairment as a result of debilitating conditions like stroke, resulting in a serious loss of mobility. Our understanding

The generation of walking motion is one of the most vital functions of the human body because it allows us to be mobile in our environment. Unfortunately, numerous individuals suffer from gait impairment as a result of debilitating conditions like stroke, resulting in a serious loss of mobility. Our understanding of human gait is limited by the amount of research we conduct in relation to human walking mechanisms and their characteristics. In order to better understand these characteristics and the systems involved in the generation of human gait, it is necessary to increase the depth and range of research pertaining to walking motion. Specifically, there has been a lack of investigation into a particular area of human gait research that could potentially yield interesting conclusions about gait rehabilitation, which is the effect of surface stiffness on human gait. In order to investigate this idea, a number of studies have been conducted using experimental devices that focus on changing surface stiffness; however, these systems lack certain functionality that would be useful in an experimental scenario. To solve this problem and to investigate the effect of surface stiffness further, a system has been developed called the Variable Stiffness Treadmill system (VST). This treadmill system is a unique investigative tool that allows for the active control of surface stiffness. What is novel about this system is its ability to change the stiffness of the surface quickly, accurately, during the gait cycle, and throughout a large range of possible stiffness values. This type of functionality in an experimental system has never been implemented and constitutes a tremendous opportunity for valuable gait research in regard to the influence of surface stiffness. In this work, the design, development, and implementation of the Variable Stiffness Treadmill system is presented and discussed along with preliminary experimentation. The results from characterization testing demonstrate highly accurate stiffness control and excellent response characteristics for specific configurations. Initial indications from human experimental trials in relation to quantifiable effects from surface stiffness variation using the Variable Stiffness Treadmill system are encouraging.
ContributorsBarkan, Andrew Robert (Author) / Artemiadis, Panagiotis (Thesis director) / Santello, Marco (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2015-05
Description
This project aims to use the shape memory alloy nitinol as the basis for a biomimetic actuator. These actuators are designed to mimic the behavior of organic muscles for use in prosthetic and robotic devices. Actuator characterization included in the project examines the force output,electrical properties, and other variables relevant

This project aims to use the shape memory alloy nitinol as the basis for a biomimetic actuator. These actuators are designed to mimic the behavior of organic muscles for use in prosthetic and robotic devices. Actuator characterization included in the project examines the force output,electrical properties, and other variables relevant to actuator design.
ContributorsNoe, Cameron Scott (Author) / LaBelle, Jeffrey (Thesis director) / Santello, Marco (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
137769-Thumbnail Image.png
Description
Electrochemical sensors function by detecting electroactive species at the electrode surface of a screen printed sensor. As more force is applied, the concentration of electroactive species at the surface of the sensor increases and a larger current is measured. Thus, when all conditions including voltage are made constant, as in

Electrochemical sensors function by detecting electroactive species at the electrode surface of a screen printed sensor. As more force is applied, the concentration of electroactive species at the surface of the sensor increases and a larger current is measured. Thus, when all conditions including voltage are made constant, as in Amp i-t, a quantifiable current can be read and the force applied can be calculated. Two common electrochemical techniques in which current is measured, cyclic voltammetry(CV) and amperometric i-t(Amp i-t), were used. A compressible sensor capable of transducing a force and acquiring feedback was created.
ContributorsFeldman, Austin Marc (Author) / LaBelle, Jeffrey (Thesis director) / Pizziconi, Vincent (Committee member) / Santello, Marco (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2013-05
137772-Thumbnail Image.png
Description
As robots become more prevalent, the need is growing for efficient yet stable control systems for applications with humans in the loop. As such, it is a challenge for scientists and engineers to develop robust and agile systems that are capable of detecting instability in teleoperated systems. Despite how much

As robots become more prevalent, the need is growing for efficient yet stable control systems for applications with humans in the loop. As such, it is a challenge for scientists and engineers to develop robust and agile systems that are capable of detecting instability in teleoperated systems. Despite how much research has been done to characterize the spatiotemporal parameters of human arm motions for reaching and gasping, not much has been done to characterize the behavior of human arm motion in response to control errors in a system. The scope of this investigation is to investigate human corrective actions in response to error in an anthropomorphic teleoperated robot limb. Characterizing human corrective actions contributes to the development of control strategies that are capable of mitigating potential instabilities inherent in human-machine control interfaces. Characterization of human corrective actions requires the simulation of a teleoperated anthropomorphic armature and the comparison of a human subject's arm kinematics, in response to error, against the human arm kinematics without error. This was achieved using OpenGL software to simulate a teleoperated robot arm and an NDI motion tracking system to acquire the subject's arm position and orientation. Error was intermittently and programmatically introduced to the virtual robot's joints as the subject attempted to reach for several targets located around the arm. The comparison of error free human arm kinematics to error prone human arm kinematics revealed an addition of a bell shaped velocity peak into the human subject's tangential velocity profile. The size, extent, and location of the additional velocity peak depended on target location and join angle error. Some joint angle and target location combinations do not produce an additional peak but simply maintain the end effector velocity at a low value until the target is reached. Additional joint angle error parameters and degrees of freedom are needed to continue this investigation.
ContributorsBevilacqua, Vincent Frank (Author) / Artemiadis, Panagiotis (Thesis director) / Santello, Marco (Committee member) / Trimble, Steven (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2013-05
137748-Thumbnail Image.png
Description
I worked on the human-machine interface to improve human physical capability. This work was done in the Human Oriented Robotics and Control Lab (HORC) towards the creation of an advanced, EMG-controlled exoskeleton. The project was new, and any work on the human- machine interface needs the physical interface itself. So

I worked on the human-machine interface to improve human physical capability. This work was done in the Human Oriented Robotics and Control Lab (HORC) towards the creation of an advanced, EMG-controlled exoskeleton. The project was new, and any work on the human- machine interface needs the physical interface itself. So I designed and fabricated a human-robot coupling device with a novel safety feature. The validation testing of this coupling proved very successful, and the device was granted a provisional patent as well as published to facilitate its spread to other human-machine interface applications, where it could be of major benefit. I then employed this coupling in experimentation towards understanding impedance, with the end goal being the creation of an EMG-based impedance exoskeleton control system. I modified a previously established robot-to-human perturbation method for use in my novel, three- dimensional (3D) impedance measurement experiment. Upon execution of this experiment, I was able to successfully characterize passive, static human arm stiffness in 3D, and in doing so validated the aforementioned method. This establishes an important foundation for promising future work on understanding impedance and the creation of the proposed control scheme, thereby furthering the field of human-robot interaction.
ContributorsO'Neill, Gerald D. (Author) / Artemiadis, Panagiotis (Thesis director) / Santello, Marco (Committee member) / Santos, Veronica (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2013-05
137749-Thumbnail Image.png
Description
In 1937 Canadian neurosurgeon Wilder Penfield made the first to attempt to map the sensorimotor cortex of the human brain in his paper entitled Somatic Motor and Sensory Representation in the Cerebral Cortex of Man as Studied by Electrical Stimulation. While analogous experimentation had been carried out previously using animal

In 1937 Canadian neurosurgeon Wilder Penfield made the first to attempt to map the sensorimotor cortex of the human brain in his paper entitled Somatic Motor and Sensory Representation in the Cerebral Cortex of Man as Studied by Electrical Stimulation. While analogous experimentation had been carried out previously using animal subjects, Penfield sought to understand the delicate and complex neuronal pathways that served as the hidden control mechanisms for human activity. The motor homunculus that followed from his findings has been widely accepted as the standard model for the relative spatial representation of the functionality of the motor cortex, and has been virtually unaltered since its inception. While Penfield took measures to collect cortical data in a manner as accurately as scientifically possible for the time period, his original model is deserving of further analysis using modern techniques. This study uses functional magnetic resonance imaging (fMRI) to quantitatively determine motor function volumes and spatial relationships for four motor tasks: toe, finger, eyebrow, and tongue. Although Penfield's general representation of the superior-to-inferior spatial distribution of the motor cortex was replicated with reasonable accuracy, relative mean task volumes seem to differ from Penfield's original model. The data was first analyzed in each individual patient's native anatomical space for task comparison within a single subject. The volumes of the motor cortex devoted to the eyebrow and toe tasks, which comprise only small portions of the Penfield homunculus, are shown to be relatively large in their fMRI representation compared to finger and tongue. However, these tasks have large deviation values, indicating a lack of consistency in task volume size among patients. Behaviorally, toe movement may include whole foot movement in some individuals, and eyebrows may include face movement, causing distributions that are more widespread. The data was then analyzed in the Montreal Neurological Institute (MNI) space, which is mathematically normalized for task comparison between different subjects. Tongue and finger tasks were the largest in volume, much like Penfield's model. However, they also had substantial deviation, again indicating task volume size inconsistencies. Since the Penfield model is only a qualitative spatial evaluation of motor function along the precentral gyrus, numerical deviation from the model cannot necessarily be quantified. Hence, the results of this study can be interpreted standalone without a current comparison. While future research will serve to further validate these distances and volumes, this quantitative model of the functionality of the motor cortex will be of great utility for future neurological research and during preoperative evaluations of neurosurgical patients.
ContributorsOland, Gabriel Lee (Author) / Frakes, David (Thesis director) / Santello, Marco (Committee member) / Baxter, Leslie (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2013-05
137409-Thumbnail Image.png
Description
Electromyography (EMG) and Electroencephalography (EEG) are techniques used to detect electrical activity produced by the human body. EMG detects electrical activity in the skeletal muscles, while EEG detects electrical activity from the scalp. The purpose of this study is to capture different types of EMG and EEG signals and to

Electromyography (EMG) and Electroencephalography (EEG) are techniques used to detect electrical activity produced by the human body. EMG detects electrical activity in the skeletal muscles, while EEG detects electrical activity from the scalp. The purpose of this study is to capture different types of EMG and EEG signals and to determine if the signals can be distinguished between each other and processed into output signals to trigger events in prosthetics. Results from the study suggest that the PSD estimates can be used to compare signals that have significant differences such as the wrist, scalp, and fingers, but it cannot fully distinguish between signals that are closely related, such as two different fingers. The signals that were identified were able to be translated into the physical output simulated on the Arduino circuit.
ContributorsJanis, William Edward (Author) / LaBelle, Jeffrey (Thesis director) / Santello, Marco (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2013-12