Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 4 of 4
Filtering by

Clear all filters

133743-Thumbnail Image.png
Description
This project is a Game Engine for 2D Fighting Games which uses Simple DirectMedia Layer and C++. The Game Engine's goal is to model the conventions the genre has for dynamically handling combat between two characters. The characters can be in a variety of different states that animate certain features

This project is a Game Engine for 2D Fighting Games which uses Simple DirectMedia Layer and C++. The Game Engine's goal is to model the conventions the genre has for dynamically handling combat between two characters. The characters can be in a variety of different states that animate certain features while also responding to the environment based on key statuses. There is a playable test game that is the subject of a user study. The Game Engine's capabilities are shown by the test game and the limitations / missing features are discussed.
ContributorsStanton, Nicholas Scott (Author) / Kobayashi, Yoshihiro (Thesis director) / Hansford, Dianne (Committee member) / Computer Science and Engineering Program (Contributor) / Sanford School of Social and Family Dynamics (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
Description
This paper compares two approaches to implementing the Marching Cubes algorithm, a method of extracting a polygonal mesh from a 3D scalar field. One possible application of this algorithm is as a procedural terrain generation technique for use in video game development. The Marching Cubes algorithm is an easily parallelizable

This paper compares two approaches to implementing the Marching Cubes algorithm, a method of extracting a polygonal mesh from a 3D scalar field. One possible application of this algorithm is as a procedural terrain generation technique for use in video game development. The Marching Cubes algorithm is an easily parallelizable task, and as such benefits greatly from being executed on the GPU. The reason that the algorithm is so well suited for parallelization is that it breaks the problem of mesh generation into a large group of similar sub-problems that can be solved completely independently.
ContributorsLord, William (Author) / Kobayashi, Yoshihiro (Thesis director) / Hansford, Dianne (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor) / Computing and Informatics Program (Contributor)
Created2022-12
ContributorsLord, William (Author) / Kobayashi, Yoshihiro (Thesis director) / Hansford, Dianne (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-12
ContributorsLord, William (Author) / Kobayashi, Yoshihiro (Thesis director) / Hansford, Dianne (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-12