Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 10 of 27
135353-Thumbnail Image.png
Description
Research on human grasp typically involves the grasp of objects designed for the study of fingertip forces. Instrumented objects for such studies have often been designed for the simulation of functional tasks, such as feeding oneself, or for rigidity such that the objects do not deform when grasped. The goal

Research on human grasp typically involves the grasp of objects designed for the study of fingertip forces. Instrumented objects for such studies have often been designed for the simulation of functional tasks, such as feeding oneself, or for rigidity such that the objects do not deform when grasped. The goal of this thesis was to design a collapsible, instrumented object to study grasp of breakable objects. Such an object would enable experiments on human grip responses to unexpected finger-object events as well as anticipatory mechanisms once object fragility has been observed. The collapsible object was designed to be modular to allow for properties such as friction and breaking force to be altered. The instrumented object could be used to study both human and artificial grasp.
ContributorsTorrez, Troy (Author) / Santos, Veronica (Thesis director) / Santello, Marco (Committee member) / Artemiadis, Panagiotis (Committee member) / Barrett, The Honors College (Contributor)
Created2012-05
136546-Thumbnail Image.png
Description
The generation of walking motion is one of the most vital functions of the human body because it allows us to be mobile in our environment. Unfortunately, numerous individuals suffer from gait impairment as a result of debilitating conditions like stroke, resulting in a serious loss of mobility. Our understanding

The generation of walking motion is one of the most vital functions of the human body because it allows us to be mobile in our environment. Unfortunately, numerous individuals suffer from gait impairment as a result of debilitating conditions like stroke, resulting in a serious loss of mobility. Our understanding of human gait is limited by the amount of research we conduct in relation to human walking mechanisms and their characteristics. In order to better understand these characteristics and the systems involved in the generation of human gait, it is necessary to increase the depth and range of research pertaining to walking motion. Specifically, there has been a lack of investigation into a particular area of human gait research that could potentially yield interesting conclusions about gait rehabilitation, which is the effect of surface stiffness on human gait. In order to investigate this idea, a number of studies have been conducted using experimental devices that focus on changing surface stiffness; however, these systems lack certain functionality that would be useful in an experimental scenario. To solve this problem and to investigate the effect of surface stiffness further, a system has been developed called the Variable Stiffness Treadmill system (VST). This treadmill system is a unique investigative tool that allows for the active control of surface stiffness. What is novel about this system is its ability to change the stiffness of the surface quickly, accurately, during the gait cycle, and throughout a large range of possible stiffness values. This type of functionality in an experimental system has never been implemented and constitutes a tremendous opportunity for valuable gait research in regard to the influence of surface stiffness. In this work, the design, development, and implementation of the Variable Stiffness Treadmill system is presented and discussed along with preliminary experimentation. The results from characterization testing demonstrate highly accurate stiffness control and excellent response characteristics for specific configurations. Initial indications from human experimental trials in relation to quantifiable effects from surface stiffness variation using the Variable Stiffness Treadmill system are encouraging.
ContributorsBarkan, Andrew Robert (Author) / Artemiadis, Panagiotis (Thesis director) / Santello, Marco (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2015-05
136711-Thumbnail Image.png
Description
This manual provides a "how-to" framework for the development of a student-run clinic. The manual should be used as a resource, referring to the table of contents and summaries of topics for specific areas of interest. The manual details the phases for the development of a student-run clinic focusing on

This manual provides a "how-to" framework for the development of a student-run clinic. The manual should be used as a resource, referring to the table of contents and summaries of topics for specific areas of interest. The manual details the phases for the development of a student-run clinic focusing on underserved populations. The Student Health Outreach for Wellness (S.H.O.W.) Community Initiative in Phoenix, Arizona serves as the example. S.H.O.W. represents just one type of clinic structuring. As such, it is important to realize when developing a clinic that there are numerous clinic approaches based on community needs, volunteer support, and funding.
ContributorsWheeler, Shannon Christine (Author) / Thompson, Pamela (Thesis director) / Gaughan, Monica (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Human Evolution and Social Change (Contributor)
Created2014-12
133704-Thumbnail Image.png
Description
In response to a national call within STEM to increase diversity within the sciences, there has been a growth in science education research aimed at increasing participation of underrepresented groups in science, such as women and ethnic/racial minorities. However, an underexplored underrepresented group in science are religious students. Though 82%

In response to a national call within STEM to increase diversity within the sciences, there has been a growth in science education research aimed at increasing participation of underrepresented groups in science, such as women and ethnic/racial minorities. However, an underexplored underrepresented group in science are religious students. Though 82% of the United States population is religiously affiliated, only 52% of scientists are religious (Pew, 2009). Even further, only 32% of biologists are religious, with 25% identifying as Christian (Pew, 2009; Ecklund, 2007). One reason as to why Christian individuals are underrepresented in biology is because faculty may express biases that affect students' ability to persist in the field of biology. In this study, we explored how revealing a Christian student's religious identity on science graduate application would impact faculty's perception of the student during the biology graduate application process. We found that faculty were significantly more likely to perceive the student who revealed their religious identity to be less competent, hirable, likeable, and faculty would be less likely to mentor the student. Our study informs upon possible reasons as to why there is an underrepresentation of Christians in science. This further suggests that bias against Christians must be addressed in order to avoid real-world, negative treatment of Christians in science.
ContributorsTruong, Jasmine Maylee (Author) / Brownell, Sara (Thesis director) / Gaughan, Monica (Committee member) / Barnes, Liz (Committee member) / School of Life Sciences (Contributor) / W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133601-Thumbnail Image.png
Description
Most daily living tasks consist of pairing a series of sequential movements, e.g., reaching to a cup, grabbing the cup, lifting and returning the cup to your mouth. The process by which we control and mediate the smooth progression of these tasks is not well understood. One method which we

Most daily living tasks consist of pairing a series of sequential movements, e.g., reaching to a cup, grabbing the cup, lifting and returning the cup to your mouth. The process by which we control and mediate the smooth progression of these tasks is not well understood. One method which we can use to further evaluate these motions is known as Startle Evoked Movements (SEM). SEM is an established technique to probe the motor learning and planning processes by detecting muscle activation of the sternocleidomastoid muscles of the neck prior to 120ms after a startling stimulus is presented. If activation of these muscles was detected following a stimulus in the 120ms window, the movement is classified as Startle+ whereas if no sternocleidomastoid activation is detected after a stimulus in the allotted time the movement is considered Startle-. For a movement to be considered SEM, the activation of movements for Startle+ trials must be faster than the activation of Startle- trials. The objective of this study was to evaluate the effect that expertise has on sequential movements as well as determining if startle can distinguish when the consolidation of actions, known as chunking, has occurred. We hypothesized that SEM could distinguish words that were solidified or chunked. Specifically, SEM would be present when expert typists were asked to type a common word but not during uncommon letter combinations. The results from this study indicated that the only word that was susceptible to SEM, where Startle+ trials were initiated faster than Startle-, was an uncommon task "HET" while the common words "AND" and "THE" were not. Additionally, the evaluation of the differences between each keystroke for common and uncommon words showed that Startle was unable to distinguish differences in motor chunking between Startle+ and Startle- trials. Explanations into why these results were observed could be related to hand dominance in expert typists. No proper research has been conducted to evaluate the susceptibility of the non-dominant hand's fingers to SEM, and the results of future studies into this as well as the results from this study can impact our understanding of sequential movements.
ContributorsMieth, Justin Richard (Author) / Honeycutt, Claire (Thesis director) / Santello, Marco (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137409-Thumbnail Image.png
Description
Electromyography (EMG) and Electroencephalography (EEG) are techniques used to detect electrical activity produced by the human body. EMG detects electrical activity in the skeletal muscles, while EEG detects electrical activity from the scalp. The purpose of this study is to capture different types of EMG and EEG signals and to

Electromyography (EMG) and Electroencephalography (EEG) are techniques used to detect electrical activity produced by the human body. EMG detects electrical activity in the skeletal muscles, while EEG detects electrical activity from the scalp. The purpose of this study is to capture different types of EMG and EEG signals and to determine if the signals can be distinguished between each other and processed into output signals to trigger events in prosthetics. Results from the study suggest that the PSD estimates can be used to compare signals that have significant differences such as the wrist, scalp, and fingers, but it cannot fully distinguish between signals that are closely related, such as two different fingers. The signals that were identified were able to be translated into the physical output simulated on the Arduino circuit.
ContributorsJanis, William Edward (Author) / LaBelle, Jeffrey (Thesis director) / Santello, Marco (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2013-12
Description
This project aims to use the shape memory alloy nitinol as the basis for a biomimetic actuator. These actuators are designed to mimic the behavior of organic muscles for use in prosthetic and robotic devices. Actuator characterization included in the project examines the force output,electrical properties, and other variables relevant

This project aims to use the shape memory alloy nitinol as the basis for a biomimetic actuator. These actuators are designed to mimic the behavior of organic muscles for use in prosthetic and robotic devices. Actuator characterization included in the project examines the force output,electrical properties, and other variables relevant to actuator design.
ContributorsNoe, Cameron Scott (Author) / LaBelle, Jeffrey (Thesis director) / Santello, Marco (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
134519-Thumbnail Image.png
Description
In 2015, the World Health Organization cited antibiotic resistance as one of the greatest current challenges to global public health. A major driver of the evolution of antibiotic resistance is the overuse and misuse of these drugs. While antibiotic stewardship, education campaigns, and health policy attempt to limit drug use

In 2015, the World Health Organization cited antibiotic resistance as one of the greatest current challenges to global public health. A major driver of the evolution of antibiotic resistance is the overuse and misuse of these drugs. While antibiotic stewardship, education campaigns, and health policy attempt to limit drug use globally, public understanding of antibiotic resistance and its consequences are lacking. The goal of this study is to analyze the social and cultural influences of antibiotic knowledge and usage behavior. Over a three-month period, I interviewed 211 laypersons in Guatemala, Spain, the Netherlands, India, South Africa, and New Zealand to understand their ideas, perceptions, and behaviors regarding antibiotics and compared results across countries. While an overall consensus across countries does exist, I found significant differences between low and high income countries as well as between low and high antibiotic consumption countries. Additionally, I found that having increased public health knowledge is related to lower antibiotic "risky" behavior. These results help contextualize national data on antibiotic consumption and resistance by illustrating relationships between access, beliefs, and consumption patterns within populations. The results also inform the development of community and culture specific educational campaigns regarding antibiotic resistance.
ContributorsHarris, Carlyn Larson (Author) / Maupin, Jonathan (Thesis director) / Gaughan, Monica (Committee member) / School of Human Evolution and Social Change (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
132991-Thumbnail Image.png
Description
More than 40% of all U.S. opioid overdose deaths in 2016 involved a prescription opioid, with more than 46 people dying every day from overdoses involving prescription opioids, (CDC, 2017). Over the years, lawmakers have implemented policies and laws to address the opioid epidemic, and many of these vary from

More than 40% of all U.S. opioid overdose deaths in 2016 involved a prescription opioid, with more than 46 people dying every day from overdoses involving prescription opioids, (CDC, 2017). Over the years, lawmakers have implemented policies and laws to address the opioid epidemic, and many of these vary from state to state. This study will lay out the basic guidelines of common pieces of legislation. It also examines relationships between 6 state-specific prescribing or preventative laws and associated changes in opioid-related deaths using a longitudinal cross-state study design (2007-2015). Specifically, it uses a linear regression to examine changes in state-specific rates of opioid-related deaths after implementation of specific policies, and whether states implementing these policies saw smaller increases than states without these policies. Initial key findings of this study show that three policies have a statistically significant association with opioid related overdose deaths are—Good Samaritan Laws, Standing Order Laws, and Naloxone Liability Laws. Paradoxically, all three policies correlated with an increase in opioid overdose deaths between 2007 and 2016. However, after correcting for the potential spurious relationship between state-specific timing of policy implementation and death rates, two policies have a statistically significant association (alpha <0.05) with opioid overdose death rates. First, the Naloxone Liability Laws were significantly associated with changes in opioid-related deaths and was correlated with a 0.33 log increase in opioid overdose death rates, or a 29% increase. This equates to about 1.39 more deaths per year per 100,000 people. Second, the legislation that allows for 3rd Party Naloxone prescriptions correlated with a 0.33 log decrease in opioid overdose death rates, or a 29% decrease. This equates to 1.39 fewer deaths per year per 100,000 people.
ContributorsDavis, Joshua Alan (Author) / Hruschka, Daniel (Thesis director) / Gaughan, Monica (Committee member) / School of Human Evolution & Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
134938-Thumbnail Image.png
Description
Startle-evoked-movement (SEM), the involuntary release of a planned movement via a startling stimulus, has gained significant attention recently for its ability to probe motor planning as well as enhance movement of the upper extremity following stroke. We recently showed that hand movements are susceptible to SEM. Interestingly, only coordinated movements

Startle-evoked-movement (SEM), the involuntary release of a planned movement via a startling stimulus, has gained significant attention recently for its ability to probe motor planning as well as enhance movement of the upper extremity following stroke. We recently showed that hand movements are susceptible to SEM. Interestingly, only coordinated movements of the hand (grasp) but not individuated movements of the finger (finger abduction) were susceptible. It was suggested that this resulted from different neural mechanisms involved in each task; however it is possible this was the result of task familiarity. The objective of this study was to evaluate a more familiar individuated finger movement, typing, to determine if this task was susceptible to SEM. We hypothesized that typing movements will be susceptible to SEM in all fingers. These results indicate that individuated movements of the fingers are susceptible to SEM when the task involves a more familiar task, since the electromyogram (EMG) latency is faster in SCM+ trials compared to SCM- trials. However, the middle finger does not show a difference in terms of the keystroke voltage signal, suggesting the middle finger is less susceptible to SEM. Given that SEM is thought to be mediated by the brainstem, specifically the reticulospinal tract, this suggest that the brainstem may play a role in movements of the distal limb when those movements are very familiar, and the independence of each finger might also have a significant on the effect of SEM. Further research includes understanding SEM in fingers in the stroke population. The implications of this research can impact the way upper extremity rehabilitation is delivered.
ContributorsQuezada Valladares, Maria Jose (Author) / Honeycutt, Claire (Thesis director) / Santello, Marco (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2016-12