Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

134734-Thumbnail Image.png
Description
"Going back as far as the time of Hippocrates, ancient Egyptians, tribal African nations, and many other early civilizations, humans used herbal remedies to treat their ailments. One such remedy was willow bark, used in tea form, to treat rheumatism and fevers. This remedy was around for many thousands of

"Going back as far as the time of Hippocrates, ancient Egyptians, tribal African nations, and many other early civilizations, humans used herbal remedies to treat their ailments. One such remedy was willow bark, used in tea form, to treat rheumatism and fevers. This remedy was around for many thousands of years, along with other treatments containing salicylates, although this was not understood at the time. As time has gone on, the willow bark tea has been transformed into aspirin as we know it today. In addition to its medicinal uses, aspirin has become versatile in its uses, including use in homemade facial treatments and in the garden. As beneficial as aspirin has been, there are negative consequences to its use, particularly in young children, and it may have strange effects on gender when used by pregnant women. From such humble beginnings, aspirin has been shown to be more than a simple painkiller." Topics discussed in this paper include: the origins of aspirin and its use as a medical treatment, the beginnings of aspirin as it is known today, how aspirin interacts with the body, the specific chemical reactions that occur when aspirin is taken, aspirin as part of a heart health regimen, the possible uses of aspirin in treating cancer, general information about dosages and typical aspirin use, some side effects of aspirin use, and novel uses of aspirin that are not necessarily medical in nature. The beneficial nature of aspirin and the possibilities it presents are discussed alongside information about its potential limitations and negative effects.
ContributorsMontes, Ariana (Author) / Huffman, Holly (Thesis director) / Garg, Vikas (Committee member) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
131832-Thumbnail Image.png
Description
RNA granules are assemblies of RNA and proteins inside cells that serve multiple roles and functions. Some of the functions they serve in include a variety of organelles such as germ cell P granules, stress granules, and neuronal granules with diverse functions. Intrinsically disordered domains are abundant in the proteins

RNA granules are assemblies of RNA and proteins inside cells that serve multiple roles and functions. Some of the functions they serve in include a variety of organelles such as germ cell P granules, stress granules, and neuronal granules with diverse functions. Intrinsically disordered domains are abundant in the proteins responsible for RNA granules, and they have been attributed to the formation and degradation of RNA granules through a liquid-liquid phase separation (LLPS) process. LLPS is typically a reversible process where a homogenous fluid de- mixes into two distinct liquid phases. Here, 47 RNA granule proteins with such disordered regions have been surveyed. These proteins have been simulated using coarse-grained molecular simulations to determine size dependence on temperature change. Upper critical solution temperature (UCST) and lower critical solution temperature (LCST) are phase behaviors that can be calculated using the data gathered for scaling and phase behaviors of these proteins. We discovered that less charged amino acid contents are present in RNA granules in comparison to general disordered sequences. This is in line with the observation that charged amino acids are less preferred for the sequence to phase separate at physiological-relevant temperatures. More interestingly, there seems to be an even mix of sequences contributing to both UCST, LCST, and no phase behaviors and the average temperature dependent behaviors of all these proteins have a relatively weak temperature dependence within the temperature range 300 and 325K. The average suggest that these proteins might collectively contribute to RNA granules in a way that adapts to small temperature fluctuations.
ContributorsFrench, Nolan James (Author) / Zheng, Wenwei (Thesis director) / Garg, Vikas (Committee member) / College of Integrative Sciences and Arts (Contributor) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05