Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 1 of 1
Filtering by

Clear all filters

Description

Growing interest in using volatile organic compounds (VOCs) as markers of biological function and health has highlighted the need for a standardized method to analyze gas metabolites released by biological organisms. Non-destructive VOC collection techniques have emerged, allowing researchers to study diseases over time without compromising the sample. However, continuous

Growing interest in using volatile organic compounds (VOCs) as markers of biological function and health has highlighted the need for a standardized method to analyze gas metabolites released by biological organisms. Non-destructive VOC collection techniques have emerged, allowing researchers to study diseases over time without compromising the sample. However, continuous sampling is often not performed, and previous systems have not undergone rigorous testing. To overcome current limitations, we developed a gas flow-based device and tested it for consistent headspace sweeping, cell viability and morphology, and detection accuracy. The results showed that the device offers a high degree of reproducibility, and our modeling shows that laminar flow conditions are maintained at experimental gas flow rates, ensuring consistent headspace sweeping. Furthermore, our modular design allowed us to adjust the temperature and input gas, allowing us to maintain a favorable environment for cell culture. Isotopic labeling and heavy VOC production confirmed that the system achieves sufficient sensitivity and reproducibility to monitor metabolic changes across time. This comprehensive evaluation demonstrates that our flow-based device has great potential in further research and subsequent clinical applications.

ContributorsAmbrose, Benjamin (Author) / Smith, Barbara (Thesis director) / Eshima, Jarrett (Committee member) / Barrett, The Honors College (Contributor) / Department of Physics (Contributor)
Created2023-05