Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 2 of 2
131689-Thumbnail Image.png
Description
Yellow-bellied marmots (Marmota flavivent) are semi-fossorial ground-dwelling sciurid rodents native to the western United States. They are facultatively social and live in colonies that may contain over 50 individuals. Marmot populations are well studied in terms of their diet, life cycle, distribution, and behavior, however, knowledge about viruses associated with

Yellow-bellied marmots (Marmota flavivent) are semi-fossorial ground-dwelling sciurid rodents native to the western United States. They are facultatively social and live in colonies that may contain over 50 individuals. Marmot populations are well studied in terms of their diet, life cycle, distribution, and behavior, however, knowledge about viruses associated with marmots is very limited. In this study we aim to identify DNA viruses by non-invasive sampling of their feces. Viral DNA was extracted from fecal material of 35 individual marmots collected in Colorado and subsequently submitted to rolling circle amplification for circular molecule enrichment. Using a viral metagenomics approach which included high-throughput sequencing and verification of viral genomes using PCR, cloning and sequencing, a diverse group of single-stranded (ss) DNA viruses were identified. Diverse ssDNA viruses were identified that belong to two established families, Genomoviridae (n=7) and Anelloviridae (n=1) and several others that belong to unclassified circular replication associated encoding single-stranded (CRESS) DNA virus groups (n=19). There were also circular DNA molecules extracted (n=4) that appear to encode one viral-like gene and are composed of <1545 nt. The viruses that belonged to the family Genomoviridae clustered with those in the Gemycircularvirus genus. The genomoviruses were extracted from 6 samples. These clustered with gemycircularvirus extracted from arachnids and feces. The anellovirus, extracted from one sample, identified here has a genome sequence that is most similar to those from other rodent species, lagomorphs, and mosquitos. The CRESS viruses identified here were extracted from 9 samples and are novel and cluster with others identified from avian species. This study gives a snapshot of viruses associated with marmots based on fecal sampling.
ContributorsKhalifeh, Anthony (Author) / Varsani, Arvind (Thesis director) / Kraberger, Simona (Committee member) / Dolby, Greer (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131941-Thumbnail Image.png
Description
New genomic resources allow for the investigation of gene family diversity in genome-enabled reptiles. The Toll-like Receptor (TLR) gene family recognizes pathogen-associated molecular patterns (PAMPs) and coevolves with environmental pathogens which makes it a strong candidate for looking at the interplay between gene family diversification and host-pathogen coevolution. Using a

New genomic resources allow for the investigation of gene family diversity in genome-enabled reptiles. The Toll-like Receptor (TLR) gene family recognizes pathogen-associated molecular patterns (PAMPs) and coevolves with environmental pathogens which makes it a strong candidate for looking at the interplay between gene family diversification and host-pathogen coevolution. Using a new orthology curation pipeline and phylogenetic reconstruction, a novel gene expansion event of TLR8 was identified to be exclusive to crocodilians and chelonians with species-specific pseudogenization events. A new gene, TLR21-like, was identified as a part of the TLR11 subfamily. These findings uncover reptile-specific gene family evolution and provide indications of the role of habitat in this process.
ContributorsMorales, Matheo (Author) / Kusumi, Kenro (Thesis director) / Dolby, Greer (Committee member) / Scott, Peter (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05