Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 1 of 1
Filtering by

Clear all filters

132278-Thumbnail Image.png
Description
Hydrocephalus is a chronic neurological condition affecting an estimated 1 in every 500 infants born. The most common treatment method involves surgical implantation of a shunt system; however these systems have a high failure rate resulting in repeat invasive surgeries. A promising approach being researched to treat hydrocephalus is a

Hydrocephalus is a chronic neurological condition affecting an estimated 1 in every 500 infants born. The most common treatment method involves surgical implantation of a shunt system; however these systems have a high failure rate resulting in repeat invasive surgeries. A promising approach being researched to treat hydrocephalus is a miniaturized valve composed of silicon and a hydrogel material. The current chemical cross-linker used in the hydrogel, EGDMA, however is susceptible to hydrolytic cleavage due to the ester groups.

This thesis proposed a novel hydrogel composed of a HEMA backbone and methacrylated Jeffamines as the chemical cross-linker as a possible replacement for the HEMA and EGDMA hydrogel used currently in the hydrocephalus valve. Jeffamine EDR-148 was methacrylated through reaction with methacryloyl chloride and characterized using 1H NMR spectroscopy. Subsequently, hydrogels were synthesized, using both EGDMA and EDR-MA, and the properties were compared through swelling and rotational rheology. Finally, degradation tests were performed to compare the hydrolytic stability of the two cross-linkers.

Results of this work demonstrated that Jeffamine EDR-148 was able to be successfully methacrylated and used to synthesize a hydrogel. The new hydrogel was shown to have comparable mechanical behavior and robustness to the EGDMA hydrogel, with slightly increased swelling capabilities. Degradation tests did not confirm the theory that the EDR-MA gels would exhibit greater hydrolytic stability however. Future work includes perfecting the purification of the EDR-MA, conducting a longer-term degradation study at physiologically relevant conditions, and demonstrating the tunability of the Jeffamine hydrogels.
ContributorsTrimble, Kari Leigh (Author) / Green, Matthew (Thesis director) / Chae, Junseok (Committee member) / Chemical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05