Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 1 of 1
Filtering by

Clear all filters

136282-Thumbnail Image.png
Description
Depletion of fossil fuel resources has led to the investigation of alternate feedstocks for and methods of chemical synthesis, in particular the use of E. coli biocatalysts to produce fine commodity chemicals from renewable glucose sources. Production of phenol, 2-phenylethanol, and styrene was investigated, in particular the limitation in yield

Depletion of fossil fuel resources has led to the investigation of alternate feedstocks for and methods of chemical synthesis, in particular the use of E. coli biocatalysts to produce fine commodity chemicals from renewable glucose sources. Production of phenol, 2-phenylethanol, and styrene was investigated, in particular the limitation in yield and accumulation that results from high product toxicity. This paper examines two methods of product toxicity mitigation: the use of efflux pumps and the separation of pathways which produce less toxic intermediates. A library of 43 efflux pumps from various organisms were screened for their potential to confer resistance to phenol, 2-phenylethanol, and styrene on an E. coli host. A pump sourced from P. putida was found to allow for increased host growth in the presence of styrene as compared to a cell with no efflux pump. The separation of styrene producing pathway was also investigated. Cells capable of performing the first and latter halves of the synthesis were allowed to grow separately and later combined in order to capitalize on the relatively lower toxicity of the intermediate, trans-cinnamate. The styrene production and yield from this separated set of cultures was compared to that resulting from the growth of cells containing the full set of styrene synthesis genes. Results from this experiment were inconclusive.
ContributorsLallmamode, Noor Atiya Jabeen (Author) / Nielsen, David (Thesis director) / Cadillo-Quiroz, Hinsby (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor) / School of Life Sciences (Contributor)
Created2015-05