Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 2 of 2
136429-Thumbnail Image.png
Description
Urbanization exposes wildlife to many unfamiliar environmental conditions, including the presence of novel structures and food sources. Adapting to or thriving within such anthropogenic modifications may involve cognitive skills, whereby animals come to solve novel problems while navigating, foraging, etc. The increased presence of humans in urban areas is an

Urbanization exposes wildlife to many unfamiliar environmental conditions, including the presence of novel structures and food sources. Adapting to or thriving within such anthropogenic modifications may involve cognitive skills, whereby animals come to solve novel problems while navigating, foraging, etc. The increased presence of humans in urban areas is an additional environmental challenge that may potentially impact cognitive performance in wildlife. To date, there has been little experimental investigation into how human disturbance affects problem solving in animals from urban and rural areas. Urban animals may show superior cognitive performance in the face of human disturbance, due to familiarity with benign human presence, or rural animals may show greater cognitive performance in response to the heightened stress of unfamiliar human presence. Here, I studied the relationship between human disturbance, urbanization, and the ability to solve a novel foraging problem in wild-caught juvenile house finches (Haemorhous mexicanus). This songbird is a successful urban dweller and native to the deserts of the southwestern United States. In captivity, finches captured from both urban and rural populations were presented with a novel foraging task (sliding a lid covering their typical food dish) and then exposed to regular periods of high or low human disturbance over several weeks before they were again presented with the task. I found that rural birds exposed to frequent human disturbance showed reduced task performance compared to human-disturbed urban finches. This result is consistent with the hypothesis that acclimation to human presence protects urban birds from reduced cognition, unlike rural birds. Some behaviors related to solving the problem (e.g. pecking at and eying the dish) also differed between urban and rural finches, possibly indicating that urban birds were less neophobic and more exploratory than rural ones. However, these results were unclear. Overall, these findings suggest that urbanization and acclimation to human presence can strongly predict avian response to novelty and cognitive challenges.
ContributorsCook, Meghan Olivia (Author) / McGraw, Kevin (Thesis director) / Bimonte-Nelson, Heather (Committee member) / Weaver, Melinda (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
136356-Thumbnail Image.png
Description
Brief memory tasks for use with pet dogs were developed using radial arm maze performance as a standard comparison measurement of memory capacity. Healthy pet dogs were first tested in a radial arm maze, where more errors made in completing the maze indicated poorer memory. These dogs were later tested

Brief memory tasks for use with pet dogs were developed using radial arm maze performance as a standard comparison measurement of memory capacity. Healthy pet dogs were first tested in a radial arm maze, where more errors made in completing the maze indicated poorer memory. These dogs were later tested with five novel memory tests, three of which utilized a treat placed behind a box with an identical distracter nearby. The treat placement was shown to each dog, and a 35 second delay, a 15 second delay with occluder, or a 15 second delay with room exit was observed before the dog could approach and find the treat. It was found that errors on the delayed match to sample (35 second delay) and occluder/object permanence (15 second delay with occluder) tasks were significantly positively correlated with the average number of errors made in the 8th trial of the radial arm maze (r =.58, p<.01** and r =.49, p<.05*, respectively) indicating that these new brief tests can reliably be used to assess memory in pet dogs.
ContributorsBoileau, Rae Nicole (Author) / Wynne, Clive (Thesis director) / Knight, George (Committee member) / Bimonte-Nelson, Heather (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor)
Created2015-05