Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 4 of 4
131304-Thumbnail Image.png
Description
Traumatic brain injuries and the effects they can bring are becoming the main focus among researchers and physicians. Cycling is the leading sport with the most traumatic brain injuries, but the design of the cycling helmet has stayed the same for decades now. The technology of a bike is constantly

Traumatic brain injuries and the effects they can bring are becoming the main focus among researchers and physicians. Cycling is the leading sport with the most traumatic brain injuries, but the design of the cycling helmet has stayed the same for decades now. The technology of a bike is constantly getting developed and testing but the helmet is lagging behind. This project consists of designing and testing different cycling helmets through ANSYS simulations to determine the ideal geometry and features a cycling helmet must include, reducing the stress that the head experiences upon impact during a fall.
ContributorsDorman, Kyle Joseph (Author) / Kosaraju, Srinivas (Thesis director) / Bacalzo, Dean (Committee member) / Murthy, Raghavendra (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131149-Thumbnail Image.png
Description
As the canonical literature, student competencies and outcomes, and foundational courses of sustainability education are contested and reaffirmed, grounding this academic discipline in an experiential understanding of place is not often asserted as a core aspect of sustainability curriculum. Place can act both as a context and conduit for sustainability

As the canonical literature, student competencies and outcomes, and foundational courses of sustainability education are contested and reaffirmed, grounding this academic discipline in an experiential understanding of place is not often asserted as a core aspect of sustainability curriculum. Place can act both as a context and conduit for sustainability education, inspiring student investment in local communities and stewardship of the landscape. Through narrative descriptions of interviews held with professors, program coordinators, and deans from nine sustainability undergraduate programs across the United States, I explore in this thesis how different educators and institutions adopt place-based pedagogy within sustainability curriculum and institutional practice. In observation of these interviews, I name three factors of difference – physical and social setting, academic ethos, and institution size – as axes around which place is incorporated in sustainability instruction and within the college as a whole. Finally, I give general recommendations for incorporating place in sustainability instruction as well as certain creative and place-oriented assignment structures discussed in the interviews.
ContributorsOrrick, Kayla M (Author) / Hirt, Paul (Thesis director) / Bernier, Andrew (Committee member) / School of Sustainability (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
Description
This paper explores Grace Logan and Emma Zuber’s understanding of how edible green spaces are mediums for emotional and social well-being. Our research aims to answer these questions: How are different populations benefitting in terms of their emotional and social well-being in similar and different ways from edible green spaces

This paper explores Grace Logan and Emma Zuber’s understanding of how edible green spaces are mediums for emotional and social well-being. Our research aims to answer these questions: How are different populations benefitting in terms of their emotional and social well-being in similar and different ways from edible green spaces in Phoenix, Arizona? How does accessibility to garden spaces as well as time, in both frequency and duration, impact personal and communal connection? To answer these questions, we surveyed volunteers from four different garden populations - Sage Garden at Arizona State University (ASU), Desert Marigold School (DMS), TigerMountain Foundation (TMF), and Growhouse Urban Agriculture Center (GUAC). Before the volunteer surveys, we interviewed a garden leader or founder to gain a better understanding of their intentions for the space and their perspective on how the garden impacts emotional and social well-being benefits in their community. The results of the survey included some variance in subpopulation answers but, overall, volunteers answered similarly. This led us to determine that gardens do bring emotional and social benefits to people, but the degree of these benefits prove difficult to truly determine due to the complexity of personal needs across different subpopulations. As well, our research on time and access proved too limited in this study to make a definitive conclusion on how it impacts personal and communal connections, but the research does suggest that time could be a determining factor for subpopulations. This study also made recommendations based on our findings, so that policies could be enacted to ensure people can access green spaces to improve their overall well-being.
ContributorsLogan, Grace Ann (Co-author) / Zuber, Emma (Co-author) / Eakin, Hallie (Thesis director) / Bernier, Andrew (Committee member) / Scott, Cloutier (Committee member) / School of Sustainability (Contributor) / School of Public Affairs (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
Description
For my creative project, I built a musical robot and explored the possibilities for robots in music education. In addition, I wrote a guide to share what I learned and to provide helpful information to anyone who is planning on building their own musical robot. This is not a step-by-ste

For my creative project, I built a musical robot and explored the possibilities for robots in music education. In addition, I wrote a guide to share what I learned and to provide helpful information to anyone who is planning on building their own musical robot. This is not a step-by-step set of instructions; however, it gives the reader a preview of many options they have for building a musical robot. This guide includes information about existing musical robots, outlines possible strategies for brainstorming ideas, and describes various capabilities of musical robots. While this project focused on the intersection of music and robotics, my approach also included design thinking, which helped provide a focus and shaped my creative process.

The robot building guide is targeted toward an audience with little or no knowledge of robotics. It begins by exploring existing musical robots and explaining how existing products can be used as a source for inspiration. Next, this guide outlines various methods of design thinking and encourages the reader to use design thinking throughout the brainstorming and building process. This guide also highlights options for designing 3D-printed parts, which can be added to a robot. After that, the guide explains options for robot movement, specifically chassis kit assembly and using a 1Sheeld board with Arduino. This guide also explores the possibilities for the interaction of lights and sound, including sound-reactive lights and remote-control lights. Practical information about materials and their organization is provided, as well. The guide concludes with exciting possibilities for robots in music education.
ContributorsDemassa, Katelyn Debra (Author) / Tobias, Dr. Evan (Thesis director) / Bacalzo, Dean (Committee member) / School of Music (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05