Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 2 of 2
148374-Thumbnail Image.png
Description

Agenesis of the corpus callosum is the lack of the development of the corpus callosum. This condition can lead to impairments in language processing, epilepsy, and emotion and social functioning, but many individuals with this condition do not show any of these impairments. The present study investigated the connectivity of

Agenesis of the corpus callosum is the lack of the development of the corpus callosum. This condition can lead to impairments in language processing, epilepsy, and emotion and social functioning, but many individuals with this condition do not show any of these impairments. The present study investigated the connectivity of language and sensorimotor networks within an individual with agenesis of the corpus callosum using resting-state fMRI. The individual’s results were compared to those of neurotypical control subjects. It was hypothesized that the overall interhemispheric functional connectivity would be less than that of a control group in bilateral language networks, but the intrahemispheric connectivity, particularly within the sensorimotor network, would show greater functional connectivity. The results revealed significantly weaker functional connectivity in the individual with agenesis of the corpus callosum within the right ventral stream compared to the control group. There were no other significant inter or intrahemispheric differences in the functional connectivity of the language and sensorimotor networks. These findings lead us to conclude that the right hemisphere’s ventral stream perhaps relies upon connections with the left hemisphere’s language networks to maintain its typical functionality. The results of this study support the idea that, in the case of corpus callosum agenesis, the right language network may contribute differently to language processes than in neurotypical controls.

ContributorsWold, Sadie Beus (Author) / Rogalsky, Corianne (Thesis director) / Azuma, Tamiko (Committee member) / College of Health Solutions (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148400-Thumbnail Image.png
Description

The brain continuously monitors speech output to detect potential errors between its sensory prediction and its sensory production (Daliri et al., 2020). When the brain encounters an error, it generates a corrective motor response, usually in the opposite direction, to reduce the effect of the error. Previous studies have shown

The brain continuously monitors speech output to detect potential errors between its sensory prediction and its sensory production (Daliri et al., 2020). When the brain encounters an error, it generates a corrective motor response, usually in the opposite direction, to reduce the effect of the error. Previous studies have shown that the type of auditory error received may impact a participant’s corrective response. In this study, we examined whether participants respond differently to categorical or non-categorical errors. We applied two types of perturbation in real-time by shifting the first formant (F1) and second formant (F2) at three different magnitudes. The vowel /ɛ/ was shifted toward the vowel /æ/ in the categorical perturbation condition. In the non-categorical perturbation condition, the vowel /ɛ/ was shifted to a sound outside of the vowel quadrilateral (increasing both F1 and F2). Our results showed that participants responded to the categorical perturbation while they did not respond to the non-categorical perturbation. Additionally, we found that in the categorical perturbation condition, as the magnitude of the perturbation increased, the magnitude of the response increased. Overall, our results suggest that the brain may respond differently to categorical and non-categorical errors, and the brain is highly attuned to errors in speech.

ContributorsCincera, Kirsten Michelle (Author) / Daliri, Ayoub (Thesis director) / Azuma, Tamiko (Committee member) / School of Sustainability (Contributor) / College of Health Solutions (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05