Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 10 of 47
136164-Thumbnail Image.png
Description
The increase of Traumatic Brain Injury (TBI) cases in recent war history has increased the urgency of research regarding how veterans are affected by TBIs. The purpose of this study was to evaluate the effects of TBI on speech recognition in noise. The AzBio Sentence Test was completed for signal-to-noise

The increase of Traumatic Brain Injury (TBI) cases in recent war history has increased the urgency of research regarding how veterans are affected by TBIs. The purpose of this study was to evaluate the effects of TBI on speech recognition in noise. The AzBio Sentence Test was completed for signal-to-noise ratios (S/N) from -10 dB to +15 dB for a control group of ten participants and one US military veteran with history of service-connected TBI. All participants had normal hearing sensitivity defined as thresholds of 20 dB or better at frequencies from 250-8000 Hz in addition to having tympanograms within normal limits. Comparison of the data collected on the control group versus the veteran suggested that the veteran performed worse than the majority of the control group on the AzBio Sentence Test. Further research with more participants would be beneficial to our understanding of how veterans with TBI perform on speech recognition tests in the presence of background noise.
ContributorsCorvasce, Erica Marie (Author) / Peterson, Kathleen (Thesis director) / Williams, Erica (Committee member) / Azuma, Tamiko (Committee member) / Barrett, The Honors College (Contributor) / Department of Speech and Hearing Science (Contributor)
Created2015-05
136652-Thumbnail Image.png
Description
Language, as an abstract, is one of the most sophisticated inventions even devised by human beings. Reading alone is a multi-faceted problem, and understanding how the brain solves it can offer enormous benefits for scientists and language-enthusiasts alike. In order to gain a more complete picture of how language and

Language, as an abstract, is one of the most sophisticated inventions even devised by human beings. Reading alone is a multi-faceted problem, and understanding how the brain solves it can offer enormous benefits for scientists and language-enthusiasts alike. In order to gain a more complete picture of how language and the brain relate, Chinese, an East Asian logographic language, and English, an alphabetic language, were compared and contrasted using all available scientific literature in both psychology and neuroimaging. Taken together, these findings are used to generalize the processing of written language. It was found that the hypothesis of a neuroplastically adaptable network that recruits brain areas based on the demands of a specific language has stronger support in current research than does the model of a fixed language network that is merely tuned for different languages. These findings reiterate the need for meticulous control of variables in order to reasonably compare language tasks and also demands more precise localization and labeling of brain regions for the purpose of determining function of individual areas.
ContributorsMcCann, Garrett (Author) / Helms Tillery, Stephen (Thesis director) / Azuma, Tamiko (Committee member) / Barrett, The Honors College (Contributor)
Created2014-05
137326-Thumbnail Image.png
Description
The purpose of this paper is to evaluate the effectiveness of a craft book used for stimulation therapy on the phonetic sounds /ŋ/, /r/, /s/, /ʃ/, /tʃ/, and /θ/. The book is specifically geared toward children who do not qualify for speech remediation services but who may be at risk

The purpose of this paper is to evaluate the effectiveness of a craft book used for stimulation therapy on the phonetic sounds /ŋ/, /r/, /s/, /ʃ/, /tʃ/, and /θ/. The book is specifically geared toward children who do not qualify for speech remediation services but who may be at risk of a speech sound disorder. Four children participated in the study with ages ranging from 4;3-7;6. The study lasted for four weeks in which data was collected on a weekly basis via Likert Scale surveys in accordance with two conversational speech samples. The speech samples were phonetically transcribed with minimal differences pre and post use of the craft book. Data from the surveys give insight to the children’s favorite crafts, the level of difficulty of each craft, and the likelihood of the craft book to be used as part of a remediation program. The study had limitations in sample size, duration, and number of craft activities. Future revisions should include increasing the number of crafts available per chapter and incorporating into the introduction an educational component for parents.
ContributorsKolaz, Chloe Ann (Author) / Weinhold, Juliet (Thesis director) / Azuma, Tamiko (Committee member) / Barrett, The Honors College (Contributor) / Department of Speech and Hearing Science (Contributor) / T. Denny Sanford School of Social and Family Dynamics (Contributor)
Created2014-05
148374-Thumbnail Image.png
Description

Agenesis of the corpus callosum is the lack of the development of the corpus callosum. This condition can lead to impairments in language processing, epilepsy, and emotion and social functioning, but many individuals with this condition do not show any of these impairments. The present study investigated the connectivity of

Agenesis of the corpus callosum is the lack of the development of the corpus callosum. This condition can lead to impairments in language processing, epilepsy, and emotion and social functioning, but many individuals with this condition do not show any of these impairments. The present study investigated the connectivity of language and sensorimotor networks within an individual with agenesis of the corpus callosum using resting-state fMRI. The individual’s results were compared to those of neurotypical control subjects. It was hypothesized that the overall interhemispheric functional connectivity would be less than that of a control group in bilateral language networks, but the intrahemispheric connectivity, particularly within the sensorimotor network, would show greater functional connectivity. The results revealed significantly weaker functional connectivity in the individual with agenesis of the corpus callosum within the right ventral stream compared to the control group. There were no other significant inter or intrahemispheric differences in the functional connectivity of the language and sensorimotor networks. These findings lead us to conclude that the right hemisphere’s ventral stream perhaps relies upon connections with the left hemisphere’s language networks to maintain its typical functionality. The results of this study support the idea that, in the case of corpus callosum agenesis, the right language network may contribute differently to language processes than in neurotypical controls.

ContributorsWold, Sadie Beus (Author) / Rogalsky, Corianne (Thesis director) / Azuma, Tamiko (Committee member) / College of Health Solutions (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148400-Thumbnail Image.png
Description

The brain continuously monitors speech output to detect potential errors between its sensory prediction and its sensory production (Daliri et al., 2020). When the brain encounters an error, it generates a corrective motor response, usually in the opposite direction, to reduce the effect of the error. Previous studies have shown

The brain continuously monitors speech output to detect potential errors between its sensory prediction and its sensory production (Daliri et al., 2020). When the brain encounters an error, it generates a corrective motor response, usually in the opposite direction, to reduce the effect of the error. Previous studies have shown that the type of auditory error received may impact a participant’s corrective response. In this study, we examined whether participants respond differently to categorical or non-categorical errors. We applied two types of perturbation in real-time by shifting the first formant (F1) and second formant (F2) at three different magnitudes. The vowel /ɛ/ was shifted toward the vowel /æ/ in the categorical perturbation condition. In the non-categorical perturbation condition, the vowel /ɛ/ was shifted to a sound outside of the vowel quadrilateral (increasing both F1 and F2). Our results showed that participants responded to the categorical perturbation while they did not respond to the non-categorical perturbation. Additionally, we found that in the categorical perturbation condition, as the magnitude of the perturbation increased, the magnitude of the response increased. Overall, our results suggest that the brain may respond differently to categorical and non-categorical errors, and the brain is highly attuned to errors in speech.

ContributorsCincera, Kirsten Michelle (Author) / Daliri, Ayoub (Thesis director) / Azuma, Tamiko (Committee member) / School of Sustainability (Contributor) / College of Health Solutions (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
131002-Thumbnail Image.png
Description
This thesis presents a process by which a controller used for collective transport tasks is qualitatively studied and probed for presence of undesirable equilibrium states that could entrap the system and prevent it from converging to a target state. Fields of study relevant to this project include dynamic system modeling,

This thesis presents a process by which a controller used for collective transport tasks is qualitatively studied and probed for presence of undesirable equilibrium states that could entrap the system and prevent it from converging to a target state. Fields of study relevant to this project include dynamic system modeling, modern control theory, script-based system simulation, and autonomous systems design. Simulation and computational software MATLAB and Simulink® were used in this thesis.
To achieve this goal, a model of a swarm performing a collective transport task in a bounded domain featuring convex obstacles was simulated in MATLAB/ Simulink®. The closed-loop dynamic equations of this model were linearized about an equilibrium state with angular acceleration and linear acceleration set to zero. The simulation was run over 30 times to confirm system ability to successfully transport the payload to a goal point without colliding with obstacles and determine ideal operating conditions by testing various orientations of objects in the bounded domain. An additional purely MATLAB simulation was run to identify local minima of the Hessian of the navigation-like potential function. By calculating this Hessian periodically throughout the system’s progress and determining the signs of its eigenvalues, a system could check whether it is trapped in a local minimum, and potentially dislodge itself through implementation of a stochastic term in the robot controllers. The eigenvalues of the Hessian calculated in this research suggested the model local minima were degenerate, indicating an error in the mathematical model for this system, which likely incurred during linearization of this highly nonlinear system.
Created2020-12
132367-Thumbnail Image.png
Description
Previous research has determined that sentence comprehension is affected when taxing an individual’s cognitive resources, such as attentional control and working memory. This can be done by manipulating the prosody of simple and complex sentences, by allowing irregular rhythm and pitch changes to occur within speech. In the present thesis,

Previous research has determined that sentence comprehension is affected when taxing an individual’s cognitive resources, such as attentional control and working memory. This can be done by manipulating the prosody of simple and complex sentences, by allowing irregular rhythm and pitch changes to occur within speech. In the present thesis, neurotypical adults were asked to comprehend sentences with normal and monotone prosody in three different versions of a sentence-picture matching task. A no-load version served as a control with the other two taxing cognitive resources in these individuals. In addition, individuals completed four other tasks that are known to reliably measure working memory. Our results indicate a possible relationship between high accuracy in complex sentences spoken in a monotone prosody with working memory when time restraints are placed on individuals. Collectively, these results may lead to a new way of working with individuals in speech therapy who have suffered a stroke by better understanding the cognitive resources that are taxed in different types of sentence comprehension settings.
ContributorsRehwalt, Cassandra Kay (Author) / Rogalsky, Corianne (Thesis director) / Azuma, Tamiko (Committee member) / Watts College of Public Service & Community Solut (Contributor) / College of Health Solutions (Contributor, Contributor) / Division of Teacher Preparation (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
131595-Thumbnail Image.png
Description
Chemoreception is an important method for an octopus to sense and react to its surroundings. However, the density of chemoreceptors within different areas of the skin of the octopus arm is poorly documented. In order to assess the relative sensitivity of various regions and the degree to which chemoreception is

Chemoreception is an important method for an octopus to sense and react to its surroundings. However, the density of chemoreceptors within different areas of the skin of the octopus arm is poorly documented. In order to assess the relative sensitivity of various regions and the degree to which chemoreception is locally controlled, octopus arms were amputated and exposed to acetic acid, a noxious chemical stimulus that has previously been shown to elicit movement responses in amputated arms (Hague et al., 2013). To test this, 11 wild-caught Octopus bimaculoides (6 females, 5 males) were obtained. Acetic acid vapor was introduced in the distal oral, distal aboral, proximal oral, and proximal aboral regions of amputated arms. The frequency of the occurrence of movement was first analyzed. For those trials in which movement occurred, the latency (delay between the stimulus and the onset of movement) and the duration of movement were analyzed. The distal aboral and distal oral regions were both more likely to move than either the proximal oral or proximal aboral regions (p < 0.0001), and when they did move, were more likely to move for longer periods of time (p < 0.05). In addition, the proximal oral region was more likely to exhibit a delay in the onset of movement compared to the distal oral or distal aboral regions (p < 0.0001). These findings provide evidence that the distal arm is most sensitive to noxious chemical stimuli. However, there were no significant differences between the distal oral and distal aboral regions, or between the proximal oral and proximal aboral regions. This suggests that there may not be a significant difference in the density of chemoreceptors in the aboral versus oral regions of the arm, contrary to claims in the literature. The other independent variables analyzed, including sex, body mass, arm length, anterior versus posterior arm identity, and left versus right arm identity, did not have a significant effect on any of the three dependent variables analyzed. Further analysis of the relative density of chemoreceptors in different regions of the octopus arm is merited.
ContributorsCasleton, Rachel Marie (Author) / Fisher, Rebecca (Thesis director) / Marvi, Hamidreza (Committee member) / Gire, David (Committee member) / School of International Letters and Cultures (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132543-Thumbnail Image.png
Description
Octopus arms employ a complex three dimensional array of musculature, called a
muscular hydrostat, which allows for nearly infinite degrees of freedom of movement without
the structure of a skeletal system. This study employed Magnetic Resonance Imaging with a
Gadoteridol-based contrast agent to image the octopus arm and view the internal tissues. Muscle
layering

Octopus arms employ a complex three dimensional array of musculature, called a
muscular hydrostat, which allows for nearly infinite degrees of freedom of movement without
the structure of a skeletal system. This study employed Magnetic Resonance Imaging with a
Gadoteridol-based contrast agent to image the octopus arm and view the internal tissues. Muscle
layering was mapped and area was measured using AMIRA image processing and the trends in
these layers at the proximal, middle, and distal portions of the arms were analyzed. A total of 39
arms from 6 specimens were scanned to give 112 total imaged sections (38 proximal, 37 middle,
37 distal), from which to ascertain and study the possible differences in musculature. The
images revealed significant increases in the internal longitudinal muscle layer percentages
between the proximal and middle, proximal and distal, and middle and distal sections of the
arms. These structural differences are hypothesized to be used for rapid retraction of the distal
segment when encountering predators or noxious stimuli. In contrast, a significant decrease in
the transverse muscle layer was found when comparing the same sections. These structural
differences are hypothesized to be a result of bending behaviors during retraction. Additionally,
the internal longitudinal layer was separately studied orally, toward the sucker, and aborally,
away from the sucker. The significant differences in oral and aboral internal longitudinal
musculature in proximal, middle, and distal sections is hypothesized to support the pseudo-joint
functionality displayed in octopus fetching behaviors. The results indicate that individual
octopus arm morphology is more unique than previously thought and supports that internal
structural differences exist to support behavioral functionality.
ContributorsCummings, Sheldon Daniel (Author) / Fisher, Rebecca (Thesis director) / Marvi, Hamidreza (Committee member) / Cherry, Brian (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132902-Thumbnail Image.png
Description
Characterization of particulate process and product design is a difficult field because of the unique bulk properties and behaviors of particles that differ from gasses and liquids. The purpose of this research is to develop an equation to relate the angle of repose and flowability, the ability of the particle

Characterization of particulate process and product design is a difficult field because of the unique bulk properties and behaviors of particles that differ from gasses and liquids. The purpose of this research is to develop an equation to relate the angle of repose and flowability, the ability of the particle to flow as it pertains to particulate processes and product design. This research is important in multiple industries such as pharmaceuticals and food processes.
ContributorsNugent, Emily Rose (Author) / Emady, Heather (Thesis director) / Marvi, Hamidreza (Committee member) / Materials Science and Engineering Program (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05