Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 10 of 31
136707-Thumbnail Image.png
Description
Pacemakers in the early 1970s were powered by betavoltaic devices which provided long lasting battery life. The betavoltaic devices also emitted gamma radiation due to inadvertent radioisotope contamination, which could not be completely shielded. The betavoltaic devices were quickly replaced by lithium batteries after their invention, and betavoltaics were abandoned.

Pacemakers in the early 1970s were powered by betavoltaic devices which provided long lasting battery life. The betavoltaic devices also emitted gamma radiation due to inadvertent radioisotope contamination, which could not be completely shielded. The betavoltaic devices were quickly replaced by lithium batteries after their invention, and betavoltaics were abandoned. Modern technological advancements made it possible to isolate beta emitting radioisotopes properly and achieve better energy conversion efficiencies which revived the topic of betavoltaics. This research project has studied state-of-the-art pacemakers and modern radioactive power sources in order to determine if modern pacemakers can be safely nuclear powered and if that is a reasonable combination.
ContributorsAwad, Al-Homam Abdualrahman (Author) / Holbert, Keith (Thesis director) / Aberle, James (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2014-12
136194-Thumbnail Image.png
Description
Generally, increasing the electrical size of an antenna will increase the directivity of the antenna. In the case of an array of identical antennas with uniform spacing, the electrical size can be increased by increasing the number of elements. However, directivity can be further increased by performing signal processing on

Generally, increasing the electrical size of an antenna will increase the directivity of the antenna. In the case of an array of identical antennas with uniform spacing, the electrical size can be increased by increasing the number of elements. However, directivity can be further increased by performing signal processing on the signals received by elements of an antenna array. This thesis focuses primarily on reproducing and expanding upon a method to increase the directivity of a two-element array using non-linear transmission lines periodically loaded with varactor diodes, which act as harmonic multipliers. Simulation and circuit design is performed using Keysight Advanced Design System, a microwave circuit simulation software package. Furthermore, a hardware implementation is discussed and recommendations are made for construction of the hardware array. Finally, possible expansion of the two-element array to a four or more element array is discussed, and preliminary simulations are examined.
ContributorsHanson, Elliot (Author) / Diaz, Rudolfo (Thesis director) / Aberle, James (Committee member) / Barrett, The Honors College (Contributor) / School of Electrical, Computer, and Energy Engineering (Contributor)
Created2015-05
Description
Theory Jam is a series of online, education videos that teach music theory in a fun, engaging way. Our project is a response to the growing need for successful online education content. It incorporates strategies for creating effective educational video content and engages with contemporary debates in the field of

Theory Jam is a series of online, education videos that teach music theory in a fun, engaging way. Our project is a response to the growing need for successful online education content. It incorporates strategies for creating effective educational video content and engages with contemporary debates in the field of music theory surrounding the purpose of a music theory education.
ContributorsCannatelli, Joshua Bryce (Co-author) / Daval, Charles Joseph (Co-author) / Miller, April (Thesis director) / Scott, Jason (Committee member) / Tobias, Evan (Committee member) / Department of English (Contributor) / School of Film, Dance and Theatre (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137496-Thumbnail Image.png
Description
A hybrid PV/T module was built, consisting of a thermal liquid heating system and a photovoltaic module system that combine in a hybrid format. This report will discuss the work on the project from Fall 2012 to Spring 2013 and the extended section on the economics for the Honors Thesis.

A hybrid PV/T module was built, consisting of a thermal liquid heating system and a photovoltaic module system that combine in a hybrid format. This report will discuss the work on the project from Fall 2012 to Spring 2013 and the extended section on the economics for the Honors Thesis. Three stages of experiments were completed. Stage 1 showed our project was functional as we were able to verify our panel produced electricity and increased the temperature of water flowing in the system by 0.65°C. Stage 2 testing included “gluing” the flow system to the back of the panel resulting in an average increase of 4.76°C in the temperature of the water in the system. Stage 3 testing included adding insulating foam to the module which resulted in increasing the average temperature of the water in our flow system by 6.95°C. The economic calculations show the expected energy cost savings for Arizona residents.
ContributorsHaines, Brent Robert (Author) / Roedel, Ronald (Thesis director) / Aberle, James (Committee member) / Rauch, Dawson (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2013-05
137463-Thumbnail Image.png
Description
A hybrid PV/T module was built, consisting of a thermal liquid heating system and a photovoltaic module system that combine in a hybrid format. This report will discuss the work on the project from Fall 2012 to Spring 2013. Three stages of experiments were completed. Stage 1 showed our project

A hybrid PV/T module was built, consisting of a thermal liquid heating system and a photovoltaic module system that combine in a hybrid format. This report will discuss the work on the project from Fall 2012 to Spring 2013. Three stages of experiments were completed. Stage 1 showed our project was functional as we were able to verify our panel produced electricity and increased the temperature of water flowing in the system by 0.65°C. Stage 2 testing included “gluing” the flow system to the back of the panel resulting in an average increase of 4.76°C in the temperature of the water in the system. Stage 3 testing included adding insulating foam to the module which resulted in increasing the average temperature of the water in our flow system by 6.95°C.
ContributorsDenke, Steven Michael (Author) / Roedel, Ron (Thesis director) / Aberle, James (Committee member) / Rauch, Dawson (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2013-05
135260-Thumbnail Image.png
Description
In modern remote sensing, arrays of sensors, such as antennas in radio frequency (RF) systems and microphones in acoustic systems, provide a basis for estimating the direction of arrival of a narrow-band signal at the sensor array. A Uniform linear array (ULA) is the most well-studied array geometry in that

In modern remote sensing, arrays of sensors, such as antennas in radio frequency (RF) systems and microphones in acoustic systems, provide a basis for estimating the direction of arrival of a narrow-band signal at the sensor array. A Uniform linear array (ULA) is the most well-studied array geometry in that its performance characteristics and limitations are well known, especially for signals originating in the far field. In some instances, the geometry of an array may be perturbed by an environmental disturbance that actually changes its nominal geometry; such as, towing an array behind a moving vehicle. Additionally, sparse arrays have become of interest again due to recent work in co-prime arrays. These sparse arrays contain fewer elements than a ULA but maintain the array length. The effects of these alterations to a ULA are of interest. Given this motivation, theoretical and experimental (i.e. via computer simulation) processes are used to determine quantitative and qualitative effects of perturbation and sparsification on standard metrics of array performance. These metrics include: main lobe gain, main lobe width and main lobe to side lobe ratio. Furthermore, in order to ascertain results/conclusions, these effects are juxtaposed with the performance of a ULA. Through the perturbation of each element following the first element drawn from a uniform distribution centered around the nominal position, it was found that both the theoretical mean and sample mean are relatively similar to the beam pattern of the full array. Meanwhile, by using a sparsification method of maintaining all the lags, it was found that this particular method was unnecessary. Simply taking out any three elements while maintaining the length of the array will produce similar results. Some configurations of elements give a better performance based on the metrics of interest in comparison to the ULA. These results demonstrate that a sparsified, perturbed or sparsified and perturbed array can be used in place of a Uniform Linear Array depending on the application.
ContributorsSilbernagel, Drake Oliver (Author) / Cochran, Douglas (Thesis director) / Aberle, James (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
133306-Thumbnail Image.png
Description
"Drama Drama" is an original story idea that I hope to one day develop into a full-length screenplay. For my honors creative project, I wanted to conduct the planning process of writing a full-length screenplay and start to work through the fundamental story problems, character motivations and the story itself.

"Drama Drama" is an original story idea that I hope to one day develop into a full-length screenplay. For my honors creative project, I wanted to conduct the planning process of writing a full-length screenplay and start to work through the fundamental story problems, character motivations and the story itself. Loosely based off experiences in my own high school theatre troupe, "Drama Drama" tells the story of Josh Simpson, a diehard Thespian, whose only goal is to graduate and go to a New York acting conservatory. Josh counts on nabbing the lead in the school's spring play, using it to spruce up his resume and seal his admittance, however he loses out to Spencer, a first-year actor and otherwise dumb jock. Inspired by campy off-Broadway musical "Ruthless!," Josh accepts a role as stage manager and tries to get to Spencer to drop out. Sabotage doesn't come so easy, however, and in trying to ruin the show, he's forced to confront his future, his friendships and the kind of person he wants to be.
ContributorsMlnarik, Carson Joseph (Author) / Bernstein, Gregory (Thesis director) / Scott, Jason (Committee member) / School of Film, Dance and Theatre (Contributor) / Walter Cronkite School of Journalism and Mass Communication (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
Description
Being Sparky will be a sports documentary about the life of Walker McCrae as Arizona State University’s mascot, Sparky. The idea behind this documentary is to outline all that encompasses being Sparky from events themselves to student life, as well as the time commitment needed for such a role. The

Being Sparky will be a sports documentary about the life of Walker McCrae as Arizona State University’s mascot, Sparky. The idea behind this documentary is to outline all that encompasses being Sparky from events themselves to student life, as well as the time commitment needed for such a role. The purpose is to show the impact Sparky has not only on the university but on the people who are Sparky. While it can just be wearing a costume and getting really sweaty, the work one puts in to it will always reap rewards. To most people, Sparky life seems simple and straightforward but the reality is that it is much more complex and that is what we want to demonstrate in this documentary.
ContributorsMcCrae, Walker (Co-author) / Millon, Ellie (Co-author) / Ashby, Ben (Co-author) / Lizzy, Baxter (Co-author) / Ingram-Waters, Mary (Thesis director) / Bonfiglio, Thomas (Committee member) / Schildkret, David (Committee member) / Eaton, John (Committee member) / Scott, Jason (Committee member) / Department of Information Systems (Contributor) / Department of Marketing (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
134093-Thumbnail Image.png
Description
Remotely controlled flying vehicles such as UAVs are becoming more common due to decreases in material costs and increases in performance of components. Radio control link options, however, have not improved at the same rate as airframes, motors, flight controllers, etc [HobbyKing]. Most UAVs require a radio link, often at

Remotely controlled flying vehicles such as UAVs are becoming more common due to decreases in material costs and increases in performance of components. Radio control link options, however, have not improved at the same rate as airframes, motors, flight controllers, etc [HobbyKing]. Most UAVs require a radio link, often at 2.4 GHz, for flight control, and a second link at 915 MHz for telemetry data transmission [HobbyKing]. Occasionally there is also a video link at either 2.4 GHz or 5.8 GHz. Having multiple transmitters increase power usage from the limited battery reserve that the UAV carries. It also increases weight and space used on the airframe. In addition, the 2.4 GHz band is often congested [ISM Congestion] and does not provide as great a range for a given transmission power as lower frequencies do [Wu]. Attempting to reduce space and weight, power consumption, and simplify design, while increasing control and telemetry range requires the design, testing, and implementation of a radio link that handles both real-time flight control and telemetry with the same transceiver. Only the flight control and telemetry will be addressed in this project. Merging and/or improving the video link will not be tackled at this time in order to simplify project goals to fit inside time constraints. The new radio link system will be verified for functionality then power and range test data will be gathered to determine how effective it is.
ContributorsPortillo-Wightman, Gabrielle Raquel (Author) / Goryll, Michael (Thesis director) / Aberle, James (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
135132-Thumbnail Image.png
Description
The purpose of the Very Long Instruction Word (VLIW) Remotely Reconfigurable DSP Element is to use VLIW as a design process and to design hardware components of a reconfigurable DSP Element and ascertaining the overall length of the Very Long Instruction Word. This project is focused solely on hardware components

The purpose of the Very Long Instruction Word (VLIW) Remotely Reconfigurable DSP Element is to use VLIW as a design process and to design hardware components of a reconfigurable DSP Element and ascertaining the overall length of the Very Long Instruction Word. This project is focused solely on hardware components being designed by hand with regards to certain specifications deemed by General Dynamics Mission Systems, and using the designs, finding the overall length of the VLIW for use in future work. To design each of the elements, General Dynamics had specified several requirements. Each element was then designed individually according to the requirements. After the initial design, each was sent back for a design review from General Dynamics, and after revision, all parts were linked together for an overall calculation on the length of the VLIW. VLIW Reconfigurable DSP Elements is not a new concept, but has yet to have a proof of concept published. Future work includes a proof of concept with software (done by the ASU Capstone team), then future development by General Dynamics. Should they choose to continue with this project, they will continue testing on FPGA boards, and perhaps future development into an ASIC. Overall the purpose of General Dynamics for proposing this project is for deep space payloads, for which this project has the most applications.
ContributorsYiin, Nathan Kehan (Author) / Clark, Lawrence (Thesis director) / Aberle, James (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12