Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 10 of 49
148121-Thumbnail Image.png
Description

This thesis proposes hardware and software security enhancements to the robotic explorer of a capstone team, in collaboration with the NASA Psyche Mission Student Collaborations program. The NASA Psyche Mission, launching in 2022 and reaching the metallic asteroid of the same name in 2026, will explore from orbit what is

This thesis proposes hardware and software security enhancements to the robotic explorer of a capstone team, in collaboration with the NASA Psyche Mission Student Collaborations program. The NASA Psyche Mission, launching in 2022 and reaching the metallic asteroid of the same name in 2026, will explore from orbit what is hypothesized to be remnant core material of an early planet, potentially providing key insights to planet formation. Following this initial mission, it is possible there would be scientists and engineers interested in proposing a mission to land an explorer on the surface of Psyche to further document various properties of the asteroid. As a proposal for a second mission, an interdisciplinary engineering and science capstone team at Arizona State University designed and constructed a robotic explorer for the hypothesized surfaces of Psyche, capable of semi-autonomously navigating simulated surfaces to collect scientific data from onboard sensors. A critical component of this explorer is the command and data handling subsystem, and as such, the security of this system, though outside the scope of the capstone project, remains a crucial consideration. This thesis proposes the pairing of Trusted Platform Module (TPM) technology for increased hardware security and the implementation of SELinux (Security Enhanced Linux) for increased software security for Earth-based testing as well as space-ready missions.

ContributorsAnderson, Kelly Joanne (Author) / Bowman, Catherine (Thesis director) / Kozicki, Michael (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
136194-Thumbnail Image.png
Description
Generally, increasing the electrical size of an antenna will increase the directivity of the antenna. In the case of an array of identical antennas with uniform spacing, the electrical size can be increased by increasing the number of elements. However, directivity can be further increased by performing signal processing on

Generally, increasing the electrical size of an antenna will increase the directivity of the antenna. In the case of an array of identical antennas with uniform spacing, the electrical size can be increased by increasing the number of elements. However, directivity can be further increased by performing signal processing on the signals received by elements of an antenna array. This thesis focuses primarily on reproducing and expanding upon a method to increase the directivity of a two-element array using non-linear transmission lines periodically loaded with varactor diodes, which act as harmonic multipliers. Simulation and circuit design is performed using Keysight Advanced Design System, a microwave circuit simulation software package. Furthermore, a hardware implementation is discussed and recommendations are made for construction of the hardware array. Finally, possible expansion of the two-element array to a four or more element array is discussed, and preliminary simulations are examined.
ContributorsHanson, Elliot (Author) / Diaz, Rudolfo (Thesis director) / Aberle, James (Committee member) / Barrett, The Honors College (Contributor) / School of Electrical, Computer, and Energy Engineering (Contributor)
Created2015-05
135872-Thumbnail Image.png
Description
The team has designed and built a golf swing analyzer that informs the user of his mistakes while putting with a golf club. The team also interfaced a Linux program with the analyzer that allows the user to review the flaws in his golf swing. In addition, the application is

The team has designed and built a golf swing analyzer that informs the user of his mistakes while putting with a golf club. The team also interfaced a Linux program with the analyzer that allows the user to review the flaws in his golf swing. In addition, the application is more personalized than existing devices and tailored to the individual based on his level of experience. The analyzer consists of an accelerometer, gyroscope, magnetometer, vibration motor, and microcontroller that are connected on a board that attaches to the top of the shaft of a golf club, fitting inside a 3D printed case. The team has assembled all of the necessary hardware, and is able to successfully display critical parameters of a golf putt, as well as send instant feedback to the user. The final budget for this project was $378.24
ContributorsKaur, Hansneet (Co-author) / Cox, Jeremy (Co-author) / Farnsworth, Chad (Co-author) / Zorob, Nabil (Co-author) / Chae, Junseok (Thesis director) / Aberle, James (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
135896-Thumbnail Image.png
Description
The purpose of the solar powered quadcopter is to join together the growing technologies of photovoltaics and quadcopters, creating a single unified device where the technologies harmonize to produce a new product with abilities beyond those of a traditional battery powered drone. Specifically, the goal is to take the battery-only

The purpose of the solar powered quadcopter is to join together the growing technologies of photovoltaics and quadcopters, creating a single unified device where the technologies harmonize to produce a new product with abilities beyond those of a traditional battery powered drone. Specifically, the goal is to take the battery-only flight time of a quadcopter loaded with a solar array and increase that flight time by 33% with additional power provided by solar cells. The major concepts explored throughout this project are quadcopter functionality and capability and solar cell power production. In order to combine these technologies, the solar power and quadcopter components were developed and analyzed individually before connecting the solar array to the quadcopter circuit and testing the design as a whole. Several solar copter models were initially developed, resulting in multiple unique quadcopter and solar cell array designs which underwent preliminary testing before settling on a finalized design which proved to be the most effective and underwent final timed flight tests. Results of these tests are showing that the technologies complement each other as anticipated and highlight promising results for future development in this area, in particular the development of a drone running on solar power alone. Applications for a product such as this are very promising in many fields, including the industries of power, defense, consumer goods and services, entertainment, marketing, and medical. Also, becoming a more popular device for UAV hobbyists, such developments would be very appealing for leisure flying and personal photography purposes as well.
ContributorsMartin, Heather Catrina (Author) / Bowden, Stuart (Thesis director) / Aberle, James (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
135736-Thumbnail Image.png
Description
The Built-In Self-Test for Simultaneous Transmit and Receive (BIST for STAR) will be able to solve the challenges of transmitting and receiving at the same time at the same frequency. One of the major components is the STAR antenna which transmits and receives along the same pathway. The main problem

The Built-In Self-Test for Simultaneous Transmit and Receive (BIST for STAR) will be able to solve the challenges of transmitting and receiving at the same time at the same frequency. One of the major components is the STAR antenna which transmits and receives along the same pathway. The main problem with doing both on the same path is that the transmit signal is usually much stronger in power compared to the received signal. The transmit signal has echoes and leakages that cause self-interference, preventing the received signal from being properly obtained. The solution developed in this project is the BIST component, which will help calculate the functional gain and phase offset of the interference signal and subtract it from the pathway so that the received signal remains. The functions of the proposed circuit board can be modeled in Matlab, where an emulation code generates a random, realistic functional gain and delay for the interference. From the generated values, the BIST for STAR was simulated to output what the measurements would be given the strength of the input signal and a controlled delay. The original Matlab code models an ideal environment directly recalculating the functional gain and phase from the given measurements in a second Matlab script. The actual product will not be ideal; a possible source of error to be considered is the effect of thermal noise. To observe the effect of noise on the BIST for STAR's performance, the Matlab code was expanded upon to include a component for thermal noise, and a method of analyzing the results of the board.
ContributorsLiu, Jennifer Yuan (Author) / Ozev, Sule (Thesis director) / Kozicki, Michael (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135759-Thumbnail Image.png
Description
The apparent phenomenon of the human eye retaining images for fractions of a second after the light source has gone is known as Persistence of Vision. While its causes are not fully understood, it can be taken advantage of in order to create illusions which trick the mind into perceiving

The apparent phenomenon of the human eye retaining images for fractions of a second after the light source has gone is known as Persistence of Vision. While its causes are not fully understood, it can be taken advantage of in order to create illusions which trick the mind into perceiving something which, in actuality, is very different from what the mind portrays. It has motivated many creative engineering technologies in the past and is the core for how we perceive motion in movies and animations. This project applies the persistence of vision concept to a lesser explored medium; the wheel of a moving bicycle. The motion of the wheel, along with intelligent control of discrete LEDs, create vibrant illusions of solid lines and shapes. These shapes make up the image to be displayed on the bike wheel. The rotation of the bike wheel can be compensated for in order to produce a standing image (or images) of the user's choosing. This thesis details how the mechanism for conducting the individual LEDs was created in order to produce a device which is capable of delivering colorful, standing images of the user's choosing.
ContributorsSaltwick, Ian Mark (Author) / Goryll, Michael (Thesis director) / Kozicki, Michael (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
137496-Thumbnail Image.png
Description
A hybrid PV/T module was built, consisting of a thermal liquid heating system and a photovoltaic module system that combine in a hybrid format. This report will discuss the work on the project from Fall 2012 to Spring 2013 and the extended section on the economics for the Honors Thesis.

A hybrid PV/T module was built, consisting of a thermal liquid heating system and a photovoltaic module system that combine in a hybrid format. This report will discuss the work on the project from Fall 2012 to Spring 2013 and the extended section on the economics for the Honors Thesis. Three stages of experiments were completed. Stage 1 showed our project was functional as we were able to verify our panel produced electricity and increased the temperature of water flowing in the system by 0.65°C. Stage 2 testing included “gluing” the flow system to the back of the panel resulting in an average increase of 4.76°C in the temperature of the water in the system. Stage 3 testing included adding insulating foam to the module which resulted in increasing the average temperature of the water in our flow system by 6.95°C. The economic calculations show the expected energy cost savings for Arizona residents.
ContributorsHaines, Brent Robert (Author) / Roedel, Ronald (Thesis director) / Aberle, James (Committee member) / Rauch, Dawson (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2013-05
137463-Thumbnail Image.png
Description
A hybrid PV/T module was built, consisting of a thermal liquid heating system and a photovoltaic module system that combine in a hybrid format. This report will discuss the work on the project from Fall 2012 to Spring 2013. Three stages of experiments were completed. Stage 1 showed our project

A hybrid PV/T module was built, consisting of a thermal liquid heating system and a photovoltaic module system that combine in a hybrid format. This report will discuss the work on the project from Fall 2012 to Spring 2013. Three stages of experiments were completed. Stage 1 showed our project was functional as we were able to verify our panel produced electricity and increased the temperature of water flowing in the system by 0.65°C. Stage 2 testing included “gluing” the flow system to the back of the panel resulting in an average increase of 4.76°C in the temperature of the water in the system. Stage 3 testing included adding insulating foam to the module which resulted in increasing the average temperature of the water in our flow system by 6.95°C.
ContributorsDenke, Steven Michael (Author) / Roedel, Ron (Thesis director) / Aberle, James (Committee member) / Rauch, Dawson (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2013-05
136707-Thumbnail Image.png
Description
Pacemakers in the early 1970s were powered by betavoltaic devices which provided long lasting battery life. The betavoltaic devices also emitted gamma radiation due to inadvertent radioisotope contamination, which could not be completely shielded. The betavoltaic devices were quickly replaced by lithium batteries after their invention, and betavoltaics were abandoned.

Pacemakers in the early 1970s were powered by betavoltaic devices which provided long lasting battery life. The betavoltaic devices also emitted gamma radiation due to inadvertent radioisotope contamination, which could not be completely shielded. The betavoltaic devices were quickly replaced by lithium batteries after their invention, and betavoltaics were abandoned. Modern technological advancements made it possible to isolate beta emitting radioisotopes properly and achieve better energy conversion efficiencies which revived the topic of betavoltaics. This research project has studied state-of-the-art pacemakers and modern radioactive power sources in order to determine if modern pacemakers can be safely nuclear powered and if that is a reasonable combination.
ContributorsAwad, Al-Homam Abdualrahman (Author) / Holbert, Keith (Thesis director) / Aberle, James (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2014-12
148467-Thumbnail Image.png
Description

This creative project is an extension of the work being done as part of Senior Design in<br/>developing the See-Through Car Pillar, a system designed to render the forward car pillars in a car<br/>invisible to the driver so they can have an unobstructed view utilizing displays, sensors, and a<br/>computer. The first

This creative project is an extension of the work being done as part of Senior Design in<br/>developing the See-Through Car Pillar, a system designed to render the forward car pillars in a car<br/>invisible to the driver so they can have an unobstructed view utilizing displays, sensors, and a<br/>computer. The first half of the paper provides the motivation, design and progress of the project, <br/>while the latter half provides a literature survey on current automobile trends, the viability of the<br/>See-Through Car Pillar as a product in the market through case studies, and alternative designs and <br/>technologies that also might address the problem statement.

ContributorsRoy, Delwyn J (Author) / Thornton, Trevor (Thesis director) / Kozicki, Michael (Committee member) / Electrical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05