Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 10 of 60
148121-Thumbnail Image.png
Description

This thesis proposes hardware and software security enhancements to the robotic explorer of a capstone team, in collaboration with the NASA Psyche Mission Student Collaborations program. The NASA Psyche Mission, launching in 2022 and reaching the metallic asteroid of the same name in 2026, will explore from orbit what is

This thesis proposes hardware and software security enhancements to the robotic explorer of a capstone team, in collaboration with the NASA Psyche Mission Student Collaborations program. The NASA Psyche Mission, launching in 2022 and reaching the metallic asteroid of the same name in 2026, will explore from orbit what is hypothesized to be remnant core material of an early planet, potentially providing key insights to planet formation. Following this initial mission, it is possible there would be scientists and engineers interested in proposing a mission to land an explorer on the surface of Psyche to further document various properties of the asteroid. As a proposal for a second mission, an interdisciplinary engineering and science capstone team at Arizona State University designed and constructed a robotic explorer for the hypothesized surfaces of Psyche, capable of semi-autonomously navigating simulated surfaces to collect scientific data from onboard sensors. A critical component of this explorer is the command and data handling subsystem, and as such, the security of this system, though outside the scope of the capstone project, remains a crucial consideration. This thesis proposes the pairing of Trusted Platform Module (TPM) technology for increased hardware security and the implementation of SELinux (Security Enhanced Linux) for increased software security for Earth-based testing as well as space-ready missions.

ContributorsAnderson, Kelly Joanne (Author) / Bowman, Catherine (Thesis director) / Kozicki, Michael (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
137204-Thumbnail Image.png
Description
The issue of adolescent dating violence is a relatively new field of research, but several studies have shown that adolescent dating violence is distinct from adult domestic violence and has its own implications and patterns. Many studies have shown that both males and females appear to be the victims and

The issue of adolescent dating violence is a relatively new field of research, but several studies have shown that adolescent dating violence is distinct from adult domestic violence and has its own implications and patterns. Many studies have shown that both males and females appear to be the victims and perpetrators of dating violence, and often times in abusive dating relationships, the perpetration is mutual. Involvement with adolescent dating violence has serious physical and psychological health consequences, and in order to combat this social phenomenon, effective prevention programs are needed. The present study discusses key characteristics of school-based prevention programs that have been shown to be effective, as well as looks specifically at one such prevention program called BLOOM for Healthy Relationships™. The researcher in this study originally set out to conduct a program evaluation of BLOOM, but encountered several obstacles with the approval process that prevented the evaluation from being completed in the available time frame. This report is now framed as a case study that will discuss the necessary resources for preparing to conduct a program evaluation, describe the obstacles encountered in the approval process and make suggestions for future strategies to complete program evaluations of BLOOM.
ContributorsKellums, Megan Marie (Author) / Updegraff, Kimberly (Thesis director) / Dumka, Larry (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Psychology (Contributor)
Created2014-05
136194-Thumbnail Image.png
Description
Generally, increasing the electrical size of an antenna will increase the directivity of the antenna. In the case of an array of identical antennas with uniform spacing, the electrical size can be increased by increasing the number of elements. However, directivity can be further increased by performing signal processing on

Generally, increasing the electrical size of an antenna will increase the directivity of the antenna. In the case of an array of identical antennas with uniform spacing, the electrical size can be increased by increasing the number of elements. However, directivity can be further increased by performing signal processing on the signals received by elements of an antenna array. This thesis focuses primarily on reproducing and expanding upon a method to increase the directivity of a two-element array using non-linear transmission lines periodically loaded with varactor diodes, which act as harmonic multipliers. Simulation and circuit design is performed using Keysight Advanced Design System, a microwave circuit simulation software package. Furthermore, a hardware implementation is discussed and recommendations are made for construction of the hardware array. Finally, possible expansion of the two-element array to a four or more element array is discussed, and preliminary simulations are examined.
ContributorsHanson, Elliot (Author) / Diaz, Rudolfo (Thesis director) / Aberle, James (Committee member) / Barrett, The Honors College (Contributor) / School of Electrical, Computer, and Energy Engineering (Contributor)
Created2015-05
135564-Thumbnail Image.png
Description
The Paradise Valley Family Resource Center (PVFRC) is a not for profit, community based organization funded by First Things First and a part of the Paradise Valley Unified School District (PVUSD) in Phoenix, Arizona. The mission of this organization is to connect and strengthen families with children from birth to

The Paradise Valley Family Resource Center (PVFRC) is a not for profit, community based organization funded by First Things First and a part of the Paradise Valley Unified School District (PVUSD) in Phoenix, Arizona. The mission of this organization is to connect and strengthen families with children from birth to five years old in the Phoenix valley. The PVFRC longed to be more cognizant of what the needs of the community they serve are, and how they, as an organization, can administer programs of value to the community. Hence, the PVFRC entered a partnership with the Community Action Research Experiences (CARE) program at Arizona State University to develop a research proposal to improve their effectiveness and efficiency at achieving their mission. The purpose of this research project was to identify and evaluate the needs of the families with children ages birth to five within the community, to improve upon existing programs and services or to implement new programs, and to discover more effective modes of awareness and advertisement to the community about the programs and services the PVFRC provides. The main research questions of the experiment included asking participants about what programs and services they need, wish, or want to exist at the PVFRC, what barriers or gaps they see or experience regarding attending the PVFRC, how did participants learn about the PVFRC, and what are the best ways to contact families in their community. The methods of the research included conducting focus group interviews with families who utilize the programs and services at the PVFRC and with early childhood professionals in the Paradise Valley Unified School District (PVUSD), which included social workers and preschool teachers. A total of 25 participants were interviewed (10 families, 6 social workers, and 9 preschool teachers) and responses from the interviews were coded by the researcher. The results of the research was that the PVFRC is meeting many needs and current families are satisfied, participants desire some changes to current programs and services, and the best modes of advertisement and awareness were "word of mouth" and the internet. It was recommended that in order to better achieve their mission, it is advised that the PVFRC make appropriate changes to programs and services as suggested by the participants, connect with mom's or parents groups in the community, collaborate with preschool teachers on the front line, and increase their online presence through the use of social media and their website.
ContributorsHoran, Mary Jensen (Author) / Foster, Stacie (Thesis director) / Brougham, Jennifer (Committee member) / Dumka, Larry (Committee member) / T. Denny Sanford School of Social and Family Dynamics (Contributor) / School of Molecular Sciences (Contributor) / School for the Science of Health Care Delivery (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135872-Thumbnail Image.png
Description
The team has designed and built a golf swing analyzer that informs the user of his mistakes while putting with a golf club. The team also interfaced a Linux program with the analyzer that allows the user to review the flaws in his golf swing. In addition, the application is

The team has designed and built a golf swing analyzer that informs the user of his mistakes while putting with a golf club. The team also interfaced a Linux program with the analyzer that allows the user to review the flaws in his golf swing. In addition, the application is more personalized than existing devices and tailored to the individual based on his level of experience. The analyzer consists of an accelerometer, gyroscope, magnetometer, vibration motor, and microcontroller that are connected on a board that attaches to the top of the shaft of a golf club, fitting inside a 3D printed case. The team has assembled all of the necessary hardware, and is able to successfully display critical parameters of a golf putt, as well as send instant feedback to the user. The final budget for this project was $378.24
ContributorsKaur, Hansneet (Co-author) / Cox, Jeremy (Co-author) / Farnsworth, Chad (Co-author) / Zorob, Nabil (Co-author) / Chae, Junseok (Thesis director) / Aberle, James (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
135896-Thumbnail Image.png
Description
The purpose of the solar powered quadcopter is to join together the growing technologies of photovoltaics and quadcopters, creating a single unified device where the technologies harmonize to produce a new product with abilities beyond those of a traditional battery powered drone. Specifically, the goal is to take the battery-only

The purpose of the solar powered quadcopter is to join together the growing technologies of photovoltaics and quadcopters, creating a single unified device where the technologies harmonize to produce a new product with abilities beyond those of a traditional battery powered drone. Specifically, the goal is to take the battery-only flight time of a quadcopter loaded with a solar array and increase that flight time by 33% with additional power provided by solar cells. The major concepts explored throughout this project are quadcopter functionality and capability and solar cell power production. In order to combine these technologies, the solar power and quadcopter components were developed and analyzed individually before connecting the solar array to the quadcopter circuit and testing the design as a whole. Several solar copter models were initially developed, resulting in multiple unique quadcopter and solar cell array designs which underwent preliminary testing before settling on a finalized design which proved to be the most effective and underwent final timed flight tests. Results of these tests are showing that the technologies complement each other as anticipated and highlight promising results for future development in this area, in particular the development of a drone running on solar power alone. Applications for a product such as this are very promising in many fields, including the industries of power, defense, consumer goods and services, entertainment, marketing, and medical. Also, becoming a more popular device for UAV hobbyists, such developments would be very appealing for leisure flying and personal photography purposes as well.
ContributorsMartin, Heather Catrina (Author) / Bowden, Stuart (Thesis director) / Aberle, James (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
135736-Thumbnail Image.png
Description
The Built-In Self-Test for Simultaneous Transmit and Receive (BIST for STAR) will be able to solve the challenges of transmitting and receiving at the same time at the same frequency. One of the major components is the STAR antenna which transmits and receives along the same pathway. The main problem

The Built-In Self-Test for Simultaneous Transmit and Receive (BIST for STAR) will be able to solve the challenges of transmitting and receiving at the same time at the same frequency. One of the major components is the STAR antenna which transmits and receives along the same pathway. The main problem with doing both on the same path is that the transmit signal is usually much stronger in power compared to the received signal. The transmit signal has echoes and leakages that cause self-interference, preventing the received signal from being properly obtained. The solution developed in this project is the BIST component, which will help calculate the functional gain and phase offset of the interference signal and subtract it from the pathway so that the received signal remains. The functions of the proposed circuit board can be modeled in Matlab, where an emulation code generates a random, realistic functional gain and delay for the interference. From the generated values, the BIST for STAR was simulated to output what the measurements would be given the strength of the input signal and a controlled delay. The original Matlab code models an ideal environment directly recalculating the functional gain and phase from the given measurements in a second Matlab script. The actual product will not be ideal; a possible source of error to be considered is the effect of thermal noise. To observe the effect of noise on the BIST for STAR's performance, the Matlab code was expanded upon to include a component for thermal noise, and a method of analyzing the results of the board.
ContributorsLiu, Jennifer Yuan (Author) / Ozev, Sule (Thesis director) / Kozicki, Michael (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135759-Thumbnail Image.png
Description
The apparent phenomenon of the human eye retaining images for fractions of a second after the light source has gone is known as Persistence of Vision. While its causes are not fully understood, it can be taken advantage of in order to create illusions which trick the mind into perceiving

The apparent phenomenon of the human eye retaining images for fractions of a second after the light source has gone is known as Persistence of Vision. While its causes are not fully understood, it can be taken advantage of in order to create illusions which trick the mind into perceiving something which, in actuality, is very different from what the mind portrays. It has motivated many creative engineering technologies in the past and is the core for how we perceive motion in movies and animations. This project applies the persistence of vision concept to a lesser explored medium; the wheel of a moving bicycle. The motion of the wheel, along with intelligent control of discrete LEDs, create vibrant illusions of solid lines and shapes. These shapes make up the image to be displayed on the bike wheel. The rotation of the bike wheel can be compensated for in order to produce a standing image (or images) of the user's choosing. This thesis details how the mechanism for conducting the individual LEDs was created in order to produce a device which is capable of delivering colorful, standing images of the user's choosing.
ContributorsSaltwick, Ian Mark (Author) / Goryll, Michael (Thesis director) / Kozicki, Michael (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135697-Thumbnail Image.png
Description
The Community Action Research Experiences (CARE) program collaborated with Singleton Moms, a local non-profit organization that provides financial, psychological, and social support services to single parents with cancer. The purpose of this action research project was to assess the volunteer program at Singleton Moms. Both past and present Singleton Moms'

The Community Action Research Experiences (CARE) program collaborated with Singleton Moms, a local non-profit organization that provides financial, psychological, and social support services to single parents with cancer. The purpose of this action research project was to assess the volunteer program at Singleton Moms. Both past and present Singleton Moms' volunteers (N = 123; 87.0% female) completed an online survey assessing their motivation for volunteering and their satisfaction with the organization. A mixed ANOVA was conducted to identify the most important motivation and satisfaction domains and to see if the findings depended on whether the volunteers were current or past volunteers. For the motivation assessment, results indicated that the volunteers rate the cancer specific and moral/human kindness domains as the strongest reasons for motivating them to volunteer at Singleton Moms. In addition, results revealed that the social connection motivation domain was the only domain with differences between the ratings of the past and present volunteers. For the satisfaction assessment, results indicated that the volunteers rate the organizational climate domain as the most fulfilled area of satisfaction within the Singleton Moms' volunteer program. It was also revealed that there were no significant differences between the ratings of the past and present volunteers among all satisfaction domains. Both the quantitative and qualitative findings suggest that Singleton Moms' implications for action may include: 1) a volunteer database audit, 2) streamlining communications, 3) variability in volunteer times, and 4) bolstering volunteer motivation. Implementing some of these actions may help Singleton Moms increase volunteer motivation and satisfaction and thus create a more effective volunteer program. Ultimately, this may encourage volunteers to continue their services at Singleton Moms and thus help Singleton Moms expand their support programs and assist additional families.
ContributorsDubois, Courtney Michelle (Author) / Miller, Cindy (Thesis director) / Dumka, Larry (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor) / T. Denny Sanford School of Social and Family Dynamics (Contributor)
Created2016-05
136876-Thumbnail Image.png
Description
The purpose of this study, conducted via the Community Action Research Experiences (CARE) Program in association with Arizona State University's T. Denny Sanford School of Social and Family Dynamics, was to expand the influence of Open Table, a faith-based, non-profit organization dedicated to equipping the impoverished with the necessary tools

The purpose of this study, conducted via the Community Action Research Experiences (CARE) Program in association with Arizona State University's T. Denny Sanford School of Social and Family Dynamics, was to expand the influence of Open Table, a faith-based, non-profit organization dedicated to equipping the impoverished with the necessary tools to restore them back to self-sufficiency through the power of relationship. The study sought to aid the organization's expansion through an analysis of the decision-making process leaders from faith congregations undergo to establish or continue partnerships with Open Table. A series of interviews were conducted with leaders from congregations currently partnered with Open Table to determine the nature of the decision-making process for adopting Open Table into their congregations, the expectations of the Open Table model for reaching the impoverished, and to what degree those expectations were met. Nine interviews were conducted from which the following results were derived. The key results revealed that congregation leaders other than the lead pastor often conducted the majority of the decision-making in regard to adopting and implementing Open Table within the various congregations. The decision to adopt Open Table often was based on whether or not any particular congregation's mission and values aligned with that of the organizations. Some expectations leaders had of Open Table were for their congregation members to receive a richer education of poverty and to help an individual exit poverty. For the most part, the results revealed that these expectations were frequently met.
ContributorsHoover, Nicole Rene (Author) / Ostrom, Amy (Thesis director) / Dumka, Larry (Committee member) / Barrett, The Honors College (Contributor) / School of Letters and Sciences (Contributor) / Department of English (Contributor)
Created2014-05