Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 21 - 30 of 144
Filtering by

Clear all filters

Description

We spent the past two semesters interviewing, surveying, and researching the fitness industry to design an fitness app that would be popular and helpful among our target market. We created an app that businesses will encourage their employees to download under the statistically-backed premise that active individuals display higher levels

We spent the past two semesters interviewing, surveying, and researching the fitness industry to design an fitness app that would be popular and helpful among our target market. We created an app that businesses will encourage their employees to download under the statistically-backed premise that active individuals display higher levels of cognitive function and lower health care rates on average than their sedentary counterparts. While designing the app we conducted both primary and secondary market research on which features and elements of the app would be most desired.

ContributorsDeasy, Thomas (Author) / Edelman, Alexander (Co-author) / Hanson, Camden (Thesis director) / Gould, Noah (Committee member) / Barrett, The Honors College (Contributor) / Department of Marketing (Contributor)
Created2023-05
Description

Students for Success is a consulting firm designed to connect undergraduate ASU students with those applying to ASU. Our counselors are well versed in scholarships, housing, programs, clubs, and deadline information. This firm provides flexible work for undergraduate students while giving applicants a custom experience from a student who truly

Students for Success is a consulting firm designed to connect undergraduate ASU students with those applying to ASU. Our counselors are well versed in scholarships, housing, programs, clubs, and deadline information. This firm provides flexible work for undergraduate students while giving applicants a custom experience from a student who truly understands the most recent application process.

ContributorsOBrien, Selam (Author) / Berryman, Hannah (Co-author) / Deniger, Leah (Co-author) / Gabaldon, Gabriella (Co-author) / Meier, Brooke (Co-author) / Byrne, Jared (Thesis director) / Lawson, Brennan (Committee member) / Kneer, Danny (Committee member) / Barrett, The Honors College (Contributor) / School of Public Affairs (Contributor) / Department of Supply Chain Management (Contributor)
Created2023-05
Description

Honored Brow is a local, non-profit, start-up business that specializes in brow lamination and lash lifts with tinting services. The business is founded and operated by four students enrolled in Arizona State University, Barrett, The Honors College. Honored Brow’s mission, through the thesis project, is to connect and provide brow

Honored Brow is a local, non-profit, start-up business that specializes in brow lamination and lash lifts with tinting services. The business is founded and operated by four students enrolled in Arizona State University, Barrett, The Honors College. Honored Brow’s mission, through the thesis project, is to connect and provide brow and lash services to enhance natural beauty and empower women. This project was completed as part of Founders Lab.

ContributorsSpencer, Brintley (Author) / Ampadu-Siaw, Rose (Co-author) / Knowles, Nicholas (Co-author) / Roland, Carson (Co-author) / Byrne, Jared (Thesis director) / Boeh, Morgan (Committee member) / Thirunagari, Samay (Committee member) / Thomasson, Anna (Committee member) / Asselyn, Dakota (Committee member) / Challa, Anirudh (Committee member) / Gajera, Rajanikant (Committee member) / Myneni, Karthik (Committee member) / Yunus, Faseeh (Committee member) / Barrett, The Honors College (Contributor) / Dean, W.P. Carey School of Business (Contributor)
Created2023-05
Description

Ctrl+P is an online store for 3D printed items, founded by four members with experience in computer-aided design (CAD) and financial management. They initially started with a broader scope but later focused on designing custom pool racks for the pool community. They conducted customer discovery with over 634 ASU students

Ctrl+P is an online store for 3D printed items, founded by four members with experience in computer-aided design (CAD) and financial management. They initially started with a broader scope but later focused on designing custom pool racks for the pool community. They conducted customer discovery with over 634 ASU students and landed an ongoing business deal with Mill’s Modern Social, a pool hall and bar in Tempe. The team has already made a profit and aims to be revenue-earning by the end of the project. The financial plan includes potential expenses for website development, printer filament, and 3D printers. Ctrl+P's brand mission is to print products desired by customers that consult Ctrl+P. The long-term goal of the team is to continue to gain customers and expand the business to a larger customer base.

ContributorsBouslog, Craig (Author) / Valentine, John (Co-author) / Bolick, Ryne (Co-author) / Sauerman, Luke (Co-author) / Byrne, Jared (Thesis director) / Balven, Rachel (Committee member) / Kneer, Danny (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2023-05
Description

Our project is to create a simplified, portable, modular electrocardiogram known as ECG/EKG. Most medical facilities, including hospitals, clinics, and skilled nursing facilities, still rely on traditional 12-lead EKG equipment consisting of a large cart with long 10 wires. These wires can be a pain to constantly detangle and rearrange

Our project is to create a simplified, portable, modular electrocardiogram known as ECG/EKG. Most medical facilities, including hospitals, clinics, and skilled nursing facilities, still rely on traditional 12-lead EKG equipment consisting of a large cart with long 10 wires. These wires can be a pain to constantly detangle and rearrange to determine a person’s heart conditions. This creates issues in fast paced scenarios such as when a patient is experiencing a heart attack and needs an EKG stat. Additionally, the current technology can be somewhat unreliable at determining heart conditions, causing providers to request multiple EKG’s for patients. With our improved versatile EKG, we can help solve these issues and implement additional outpatient use with its portable features. This can be done by remotely monitoring heart conditions during activities such as exercise, sleep, or stressful events, without worrying about wire disturbance.

ContributorsTaut, Sarah (Author) / Mullins, Hunter (Co-author) / Huang, Hai (Co-author) / Lam, Jadon (Co-author) / Lee, Youngju (Co-author) / Goode, Zachary (Co-author) / Byrne, Jared (Thesis director) / Swader, Melissa (Committee member) / McElfish, Alex (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor)
Created2023-05
Description

Our project is to create a simplified, portable, modular electrocardiogram known as ECG/EKG. Most medical facilities, including hospitals, clinics, and skilled nursing facilities, still rely on traditional 12-lead EKG equipment consisting of a large cart with long 10 wires. These wires can be a pain to constantly detangle and rearrange

Our project is to create a simplified, portable, modular electrocardiogram known as ECG/EKG. Most medical facilities, including hospitals, clinics, and skilled nursing facilities, still rely on traditional 12-lead EKG equipment consisting of a large cart with long 10 wires. These wires can be a pain to constantly detangle and rearrange to determine a person’s heart conditions. This creates issues in fast paced scenarios such as when a patient is experiencing a heart attack and needs an EKG stat. Additionally, the current technology can be somewhat unreliable at determining heart conditions, causing providers to request multiple EKG’s for patients. With our improved versatile EKG, we can help solve these issues and implement additional outpatient use with its portable features. This can be done by remotely monitoring heart conditions during activities such as exercise, sleep, or stressful events, without worrying about wire disturbance.

ContributorsLam, Jadon (Author) / Mullins, Hunter (Co-author) / Huang, Hai (Co-author) / Taut, Sarah (Co-author) / Lee, Youngju (Co-author) / Goode, Zachary (Co-author) / Byrne, Jared (Thesis director) / Swader, Melissa (Committee member) / McElfish, Alex (Committee member) / Barrett, The Honors College (Contributor) / Department of Information Systems (Contributor) / Human Systems Engineering (Contributor)
Created2023-05
Description

Our project is to create a simplified, portable, modular electrocardiogram known as ECG/EKG. Most medical facilities, including hospitals, clinics, and skilled nursing facilities, still rely on traditional 12-lead EKG equipment consisting of a large cart with long 10 wires. These wires can be a pain to constantly detangle and rearrange

Our project is to create a simplified, portable, modular electrocardiogram known as ECG/EKG. Most medical facilities, including hospitals, clinics, and skilled nursing facilities, still rely on traditional 12-lead EKG equipment consisting of a large cart with long 10 wires. These wires can be a pain to constantly detangle and rearrange to determine a person’s heart conditions. This creates issues in fast paced scenarios such as when a patient is experiencing a heart attack and needs an EKG stat. Additionally, the current technology can be somewhat unreliable at determining heart conditions, causing providers to request multiple EKG’s for patients. With our improved versatile EKG, we can help solve these issues and implement additional outpatient use with its portable features. This can be done by remotely monitoring heart conditions during activities such as exercise, sleep, or stressful events, without worrying about wire disturbance.

ContributorsMullins, Hunter (Author) / Lam, Jadon (Co-author) / Goode, Zachary (Co-author) / Taut, Sarah (Co-author) / Lee, Youngju (Co-author) / Huang, Hai (Co-author) / Byrne, Jared (Thesis director) / Swader, Melissa (Committee member) / McElfish, Alex (Committee member) / Barrett, The Honors College (Contributor) / Engineering Programs (Contributor)
Created2023-05
Description

Our project is to create a simplified, portable, modular electrocardiogram known as ECG/EKG. Most medical facilities, including hospitals, clinics, and skilled nursing facilities, still rely on traditional 12-lead EKG equipment consisting of a large cart with long 10 wires. These wires can be a pain to constantly detangle and rearrange

Our project is to create a simplified, portable, modular electrocardiogram known as ECG/EKG. Most medical facilities, including hospitals, clinics, and skilled nursing facilities, still rely on traditional 12-lead EKG equipment consisting of a large cart with long 10 wires. These wires can be a pain to constantly detangle and rearrange to determine a person’s heart conditions. This creates issues in fast paced scenarios such as when a patient is experiencing a heart attack and needs an EKG stat. Additionally, the current technology can be somewhat unreliable at determining heart conditions, causing providers to request multiple EKG’s for patients. With our improved versatile EKG, we can help solve these issues and implement additional outpatient use with its portable features. This can be done by remotely monitoring heart conditions during activities such as exercise, sleep, or stressful events, without worrying about wire disturbance.

ContributorsLee, Youngju (Author) / Taut, Sarah (Co-author) / Goode, Zachary (Co-author) / Lam, Jadon (Co-author) / Huang, Hai (Co-author) / Mullins, Hunter (Co-author) / Byrne, Jared (Thesis director) / Swader, Melissa (Committee member) / McElfish, Alex (Committee member) / Barrett, The Honors College (Contributor) / Department of Management and Entrepreneurship (Contributor) / Dean, W.P. Carey School of Business (Contributor)
Created2023-05
Description

Our project is to create a simplified, portable, modular electrocardiogram known as ECG/EKG. Most medical facilities, including hospitals, clinics, and skilled nursing facilities, still rely on traditional 12-lead EKG equipment consisting of a large cart with long 10 wires. These wires can be a pain to constantly detangle and rearrange

Our project is to create a simplified, portable, modular electrocardiogram known as ECG/EKG. Most medical facilities, including hospitals, clinics, and skilled nursing facilities, still rely on traditional 12-lead EKG equipment consisting of a large cart with long 10 wires. These wires can be a pain to constantly detangle and rearrange to determine a person’s heart conditions. This creates issues in fast paced scenarios such as when a patient is experiencing a heart attack and needs an EKG stat. Additionally, the current technology can be somewhat unreliable at determining heart conditions, causing providers to request multiple EKG’s for patients. With our improved versatile EKG, we can help solve these issues and implement additional outpatient use with its portable features. This can be done by remotely monitoring heart conditions during activities such as exercise, sleep, or stressful events, without worrying about wire disturbance.

ContributorsGoode, Zachary (Author) / Huang, Hai (Co-author) / Lam, Jadon (Co-author) / Lee, Youngju (Co-author) / Taut, Sarah (Co-author) / Mullins, Hunter (Co-author) / Byrne, Jared (Thesis director) / Swader, Melissa (Committee member) / Barrett, The Honors College (Contributor) / Engineering Programs (Contributor) / School of Manufacturing Systems and Networks (Contributor)
Created2023-05
Description

Our project is to create a simplified, portable, modular electrocardiogram known as ECG/EKG. Most medical facilities, including hospitals, clinics, and skilled nursing facilities, still rely on traditional 12-lead EKG equipment consisting of a large cart with long 10 wires. These wires can be a pain to constantly detangle and rearrange

Our project is to create a simplified, portable, modular electrocardiogram known as ECG/EKG. Most medical facilities, including hospitals, clinics, and skilled nursing facilities, still rely on traditional 12-lead EKG equipment consisting of a large cart with long 10 wires. These wires can be a pain to constantly detangle and rearrange to determine a person’s heart conditions. This creates issues in fast paced scenarios such as when a patient is experiencing a heart attack and needs an EKG stat. Additionally, the current technology can be somewhat unreliable at determining heart conditions, causing providers to request multiple EKG’s for patients. With our improved versatile EKG, we can help solve these issues and implement additional outpatient use with its portable features. This can be done by remotely monitoring heart conditions during activities such as exercise, sleep, or stressful events, without worrying about wire disturbance.

ContributorsHuang, Hai (Author) / Mullins, Hunter (Co-author) / Lam, Jadon (Co-author) / Taut, Sarah (Co-author) / Goode, Zachary (Co-author) / Lee, Youngju (Co-author) / Byrne, Jared (Thesis director) / Swader, Melissa (Committee member) / McElfish, Alex (Committee member) / Barrett, The Honors College (Contributor) / Department of Information Systems (Contributor) / Department of Supply Chain Management (Contributor)
Created2023-05