Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 1 of 1
Filtering by

Clear all filters

133446-Thumbnail Image.png
Description
Technologies used in corrective scoliosis surgery do not provide accurate, validated measurements of applied loading on the spine. Proposing a solution to optimize intra-operative load sensing to enhance surgical outcomes, mechanical factors of a capacitive load sensor are examined. Using ASTM D3574-17, experimental methods were performed to verify material homogeneity

Technologies used in corrective scoliosis surgery do not provide accurate, validated measurements of applied loading on the spine. Proposing a solution to optimize intra-operative load sensing to enhance surgical outcomes, mechanical factors of a capacitive load sensor are examined. Using ASTM D3574-17, experimental methods were performed to verify material homogeneity and validity, to identify critical factors in maximizing compressive strength, and to understand preliminary fatigue behavior for reliability measures. In leveraging the Design of Experiment (DOE) methodology to decrease device variability, the mechanical factors explored were: sensor thickness, diameter ratio of conductive foam, density, and surface hardness. Multiple iterations DOEs identified high thickness and low diameter ratios as significant factors which increase the output response of compressive strength. After identifying the optimal factor combination for the sensor it was found that the maximum experimental load range was 15.57N-16.9lbf. Fatigue testing was then performed on the highest performing factor combination group from the compression results. From the two rounds that were tested on sensor specimen, no significant difference was found between the two groups' rates of changes in thickness per compression. Each round of foam testing resulted in similar thickness values, which suggests that the sensor has potential to perform consistently during a 6-8 hour surgery if a material with improved elasticity and mechanical strength is used. Thus, the experimental procedures fulfill proof-of-concept tests to indicate feasibility of compressive strength and reliability of the sensor's mechanical features. Future experimentations will involve using a different dielectric material in place of the foam, such as a conductive thermoset or thermoplastic elastomer. Additional levels for each factor will be test to test the behavior of the material to yield a higher compressive strength and certainty of reliability. Overall, this study was useful in identifying significant factors for achieving compressive strength, while also providing evidence of the device's potential for reliability during scoliosis surgeries.
ContributorsWieser, Megan Marie (Author) / LaBelle, Jeffrey (Thesis director) / Newcomb, Anna (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05