Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 1 of 1
Filtering by

Clear all filters

137040-Thumbnail Image.png
Description
Amino acid analysis (AAA) of egg white lysozyme and bovine Achilles tendon collagen was performed using 1H solution-state nuclear magnetic resonance (NMR) spectroscopy. The proteins were hydrolyzed in 6M HCL with and without 0.02% phenol at 110\u00B0C for 24, 48, and 72 hours. For both proteins, 18 of 20 amino

Amino acid analysis (AAA) of egg white lysozyme and bovine Achilles tendon collagen was performed using 1H solution-state nuclear magnetic resonance (NMR) spectroscopy. The proteins were hydrolyzed in 6M HCL with and without 0.02% phenol at 110\u00B0C for 24, 48, and 72 hours. For both proteins, 18 of 20 amino acids were characterized including hydroxyproline and hydroxylysine in collagen, using 1-dimensional (1D) and 2-dimensional (2D) NMR spectroscopy experiments. Errors ranging from <1% to 8% were seen in treatments with and without phenol. Both proteins could be correctly identified within their own species using the online database search AACompIdent. The proposed approach is a simple analytical technique that does not require the use of column separation or amino acid derivatization prior to compositional analysis.
ContributorsBaranowski, Michael Edward (Author) / Yarger, Jeffery (Thesis director) / Holland, Gregory (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / Herberger Institute for Design and the Arts (Contributor)
Created2014-05