Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

131873-Thumbnail Image.png
Description
As structural engineers in practice continue to improve their methods and advance their analysis and design techniques through the use of new technology, how should structural engineering education programs evolve as well to match the increasing complexity of the industry? This thesis serves to analyze the many differing opinions and

As structural engineers in practice continue to improve their methods and advance their analysis and design techniques through the use of new technology, how should structural engineering education programs evolve as well to match the increasing complexity of the industry? This thesis serves to analyze the many differing opinions and techniques on modernizing structural engineering education programs through a literature review on the content put out by active structural engineering education reform committees, articles and publications by well-known educators and practitioners, and a series of interviews conducted with key individuals specifically for this project. According to the opinions analyzed in this paper, structural engineering education should be a 5-year program that ends with a master’s degree, so that students obtain enough necessary knowledge to begin their positions as structural engineers. Firms would rather continue the education of new-hires themselves after this time than to wait and pay more for students to finish longer graduate-type programs. Computer programs should be implemented further into education programs, and would be most productive not as a replacement to hand-calculation methods, but as a supplement. Students should be tasked with writing codes, so that they are required to implement these calculations into computer programs themselves, and use classical methods to verify their answers. In this way, engineering programs will be creating critical thinkers who can adapt to any new structural analysis and design programs, and not just be training students on current programs that will become obsolete with time. It is the responsibility of educators to educate current staff on how to implement these coding methods seamlessly into education as a supplement to hand calculation methods. Students will be able to learn what is behind commercial coding software, develop their hand-calculation skills through code verification, and focus more on the ever-important modeling and interpretation phases of problem solving. Practitioners will have the responsibility of not expecting students to graduate with knowledge of specific software programs, but instead recruiting students who showcase critical thinking skills and understand the backbone of these programs. They will continue the education of recent graduates themselves, providing them with real-world experience that they cannot receive in school while training them to use company-specific analysis and design software.
ContributorsMaurer, Cole Chaon (Author) / Hjelmstad, Keith (Thesis director) / Chatziefstratiou, Efthalia (Committee member) / Civil, Environmental and Sustainable Eng Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
Description
Best Management Practices (BMPs) are often designed to restore the water quality of impaired waterbodies. They are expensive to install and maintain and often have limited post-installation analysis. There is a gap in our knowledge of the long-term real-world efficiency of such systems as their dynamics are complex and poorly

Best Management Practices (BMPs) are often designed to restore the water quality of impaired waterbodies. They are expensive to install and maintain and often have limited post-installation analysis. There is a gap in our knowledge of the long-term real-world efficiency of such systems as their dynamics are complex and poorly understood, and we have very limited data about these systems. We looked at water quality changes pre- and post-BMP implementation from sites around the US to better understand the impacts of BMPs on the nitrogen (N) and phosphorus (P) concentrations in the waterbodies. Water quality data was obtained from 72 waterbodies across the United States using the National Water Quality Monitoring Council’s Water Quality Portal. This data was analyzed for trends using the Kaplan-Meier method, exceedance probability, and lag time analysis. Out of the seventy-two (72) watershed locations, twenty-two (22) did not have enough data for analysis. Of these fifty (50) remaining watersheds locations one hundred eighty-four (184) monitoring sites were analyzed. Only sixty-nine (69) of these monitoring sites were found to have enough data for analysis. Forty-eight (48) sites saw improvement in nutrient levels, where overall post-implementation exceedance probability for critical thresholds (defined as 1 mg/l for N and 0.1 mg/l for P) decreased. Twenty-one (21) sites did not see improvement, where post-implementation exceedance probabilities did not show any reduction; in some cases, it showed an increase. Even among the efficient sites, where improvement was found, significant variation was observed in changes in exceedance probability with time, with many sites not demonstrating an expected uniform decreasing trend. It was also found that 56 out of the 72 water bodies had some biological indicator present, these included dissolved oxygen concentrations, benthic macroinvertebrate populations, fish communities/aquatic life, bacteria, and index scores. However, data gaps were detrimental to conclusively assessing BMPs with biological indicators. It was determined that sparse biological indicators data were not indicative of BMP success. These observations highlight the importance of designing a monitoring strategy that can capture these unexpected trends and allow a better understanding of BMPs. Along with better monitoring strategies, consistent and frequent monitoring is needed. Therefore, the effectiveness of best management practices was inconclusive due to a lack of available data on many sites.
ContributorsBlair, Antonio (Author) / Baker, Kayla (Co-author) / Kumar, Saurav (Thesis director) / Weiss, Josh (Committee member) / Johnson, Abbey (Committee member) / Barrett, The Honors College (Contributor) / Civil, Environmental and Sustainable Eng Program (Contributor)
Created2024-05