Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

137766-Thumbnail Image.png
Description
Background: Breast cancer is the most frequently diagnosed cancer and the leading cause of cancer deaths in females worldwide, accounting for 23% of all new cancer cases and 14% of all total cancer deaths in 2008. Five tumor-normal pairs of primary breast epithelial cells were treated for infinite proliferation by

Background: Breast cancer is the most frequently diagnosed cancer and the leading cause of cancer deaths in females worldwide, accounting for 23% of all new cancer cases and 14% of all total cancer deaths in 2008. Five tumor-normal pairs of primary breast epithelial cells were treated for infinite proliferation by using a ROCK inhibitor and mouse feeder cells. Methods: Raw paired-end, 100x coverage RNA-Seq data was aligned to the Human Reference Genome Version 19 using BWA and Tophat. Gene differential expression analysis was completed using Cufflinks and Cuffdiff. Interactive Genome Viewer was used for data visualization. Results: 15 genes were found to be down-regulated by at least one log-fold change in 4/5 of tumor samples. 75 genes were found to be down-regulated in 3/5 of our tumor samples by at least one log-fold change. 11 genes were found to be up-regulated in 4/5 of our tumor samples, and 68 genes were identified to be up-regulated in 3/5 of the tumor samples by at least one-fold change. Conclusion: Expression changes in genes such as AZGP1, AGER, ALG11, and S1007 suggest a disruption in the glycosylation pathway. No correlation was found between Cufflink's Her2 gene-expression and DAKO score classification.
ContributorsHernandez, Fernando (Author) / Anderson, Karen (Thesis director) / Mangone, Marco (Committee member) / Park, Jin (Committee member) / Barrett, The Honors College (Contributor) / Department of Information Systems (Contributor)
Created2013-05
Description

Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease (ILD) that results in the permanent scarring and damage of lung tissue. Currently, there is no known cause or viable treatment for this disease, and the majority of patients either receive a lung transplant or succumb to the disease within five

Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease (ILD) that results in the permanent scarring and damage of lung tissue. Currently, there is no known cause or viable treatment for this disease, and the majority of patients either receive a lung transplant or succumb to the disease within five years of diagnosis. This project centers around studying IPF through analyzing gene expression patterns in healthy vs. diseased lung tissue via spatial transcriptomics. Spatial transcriptomics is the study of individual RNA transcripts within cells on a spatial level. With the novel technology MERFISH, we can detect gene expression in a spatial context with single-cell resolution, allowing us to make inferences about certain patterns of gene expression that are solely driven by the pathology of the disease. A total of 120 cells were selected from 21 different lung samples - 6 healthy; 15 ILD. Within those lung samples, selected from 4 different tissue features - control, less fibrotic, more fibrotic, and cystic. We built an analysis pipeline in R to analyze cell type composition around these features at different distances from the center cell (0-75, 76-150, and 150-225 μm). Cell types were annotated at both a broad (less specific) and fine (more specific) level. Upon analyzing the relationship between the proportions of various cell types and distance from tissue features, we found that within the broad cell type annotation level, airway epithelium cells had a negative relationship with distance and were statistically significant through linear regression models. Within the fine cell type annotation level, ciliated/secretory cells displayed this same trend. The results above support our current understanding of cystic tissue in lung tissue, and is a foundation for understanding disease pathology as a whole.

ContributorsMallapragada, Saahithi (Author) / Wilson, Melissa (Thesis director) / Banovich, Nick (Thesis director) / Vannan, Annika (Committee member) / Barrett, The Honors College (Contributor) / College of Health Solutions (Contributor) / School of Life Sciences (Contributor)
Created2023-05