Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 8 of 8
Filtering by

Clear all filters

Description
For my Honor’s Project for Barrett the Honors College, I chose to research and develop an
application on the topic of Ideal Weightlifting Volume and Frequency for The Male Lifter. The
reason I decided to center my project around this topic is due to the plethora of information
available on this subject matter.

For my Honor’s Project for Barrett the Honors College, I chose to research and develop an
application on the topic of Ideal Weightlifting Volume and Frequency for The Male Lifter. The
reason I decided to center my project around this topic is due to the plethora of information
available on this subject matter. However, I was more driven to pursue this subject matter due to
the lack of implementation and usage of all the relevant information and case studies offered to
us through the means of online journals, abstracts, reports, etc.
The application will be programmed using the software known as Android Studio. Inside
Android Studio, the programming language that will be utilized is Java. The goal for this
application is to gather information from the user, and with that information, create a conducive
weekly weightlifting regiment based on the wants and needs of the user. Furthermore, the
application will only create programs on a week to week basis, thus encouraging the user to
dabble with different preferences each week. Outputting the program on a week-to-week basis is
an integral logic of this program because it is my belief that if the user is given the privilege to
change their programming on a weekly basis this will allow for flexibility, adaptability, and the
pursuance of short-term goals, which is much more tangible in the onslaught of obtaining a goal.
When browsing through the app store or the internet, it is incredibly difficult to find online
programs that utilize research and scientific credibility. Many of these programs and trainers
offer quick results that are flashy and trendy, however lack any real qualitative reinforcement.
Thus, it is my mission, with my application, to create a program that is intuitive for the user, as
well as to provide scientific programming with proper citation of case studies and reports
conducted by educated individuals.
ContributorsMallick, Zeeshan Khursheed (Author) / Marsit, Joseph (Thesis director) / Chisum, Jack (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132922-Thumbnail Image.png
Description
Charleston, South Carolina currently faces serious annual flooding issues due to tides and rainfall. These issues are expected to get significantly worse within the next few decades reaching a projected 180 days a year of flooding by 2045 (Carter et al., 2018). Several permanent solutions are in progress by the

Charleston, South Carolina currently faces serious annual flooding issues due to tides and rainfall. These issues are expected to get significantly worse within the next few decades reaching a projected 180 days a year of flooding by 2045 (Carter et al., 2018). Several permanent solutions are in progress by the City of Charleston. However, these solutions are years away at minimum and faced with development issues. This thesis attempts to treat some of the symptoms of flooding, such as navigation, by creating an iPhone application which predicts flooding and helps people navigate around it safely. Specifically, this thesis will take into account rainfall and tide levels to display to users actively flooded areas of downtown Charleston and provide routing to a destination from a user’s location around these flooded areas whenever possible.
ContributorsSalisbury, Mason (Author) / Balasooriya, Janaka (Thesis director) / Faucon, Christophe (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133050-Thumbnail Image.png
Description
Despite the more tightly controlled permissions and Java framework used by most programs in the Android operating system, an attacker can use the same classic vulnerabilities that exist for traditional Linux binaries on the programs in the Android operating system. Some classic vulnerabilities include stack overows, string formats, and hea

Despite the more tightly controlled permissions and Java framework used by most programs in the Android operating system, an attacker can use the same classic vulnerabilities that exist for traditional Linux binaries on the programs in the Android operating system. Some classic vulnerabilities include stack overows, string formats, and heap meta-information corruption. Through the exploitation of these vulnerabilities an attacker can hijack the execution ow of an application. After hijacking the execution ow, an attacker can then violate the con_dentiality, integrity, or availability of the operating system. Over the years, the operating systems and compliers have implemented a number of protections to prevent the exploitation of vulnerable programs. The most widely implemented protections include Non-eXecutable stack (NX Stack), Address Space Layout Randomization (ASLR), and Stack Canaries (Canaries). NX Stack protections prevent the injection and execution of arbitrary code through the use of a permissions framework within a program. Whereas, ASLR and Canaries rely on obfuscation techniques to protect control ow, which requires su_cient entropy between each execution. Early in the implementation of these protections in Linux, researchers discovered that without su_cient entropy between executions, ASLR and Canaries were easily bypassed. For example, the obfuscation techniques were useless in programs that ran continuously because the programs did not change the canaries or re-randomize the address space. Similarly, aws in the implementation of ASLR and Canaries in Android only re-randomizes the values after rebooting, which means the address space locations and canary values remain constant across the executions of an Android program. As a result, an attacker can hijack the control ow Android binaries that contain control ow vulnerabilities. The purpose of this paper is to expose these aws and the methodology used to verify their existence in Android versions 4.1 (Jelly Bean) through 8.0 (Oreo).
ContributorsGibbs, Wil (Author) / Doupe, Adam (Thesis director) / Shoshitaishvili, Yan (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2018-12
148498-Thumbnail Image.png
Description

Millions of pets go missing every year and this project has the purpose of offering a pet GPS tracking solution to aid in this issue. An Arduino microcontroller was combined with a GPS module and GSM module to create the hardware of the device, which was then connected to a

Millions of pets go missing every year and this project has the purpose of offering a pet GPS tracking solution to aid in this issue. An Arduino microcontroller was combined with a GPS module and GSM module to create the hardware of the device, which was then connected to a mobile application that was developed for the explicit purpose of this project. Amazon Web Services was used to significantly bring down the cost of connecting the hardware to the mobile app. Upon the completion of the project, a prototype pet GPS tracking device and mobile application were developed, and instructions were given so that any user could re-create the same solution for their own purposes.

ContributorsKiaei, Ariana (Author) / Ren, Fengbo (Thesis director) / Abraham, Seth (Committee member) / Computer Science and Engineering Program (Contributor) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Spacebound is a mobile application that helps people understand astronomical distances by converting their distances walked on Earth to an interstellar scale. To better navigate outer space, the app presents predefined distance scales and journeys with various objects (planets, asteroids, stars) to explore. Spacebound hopes to be a gamified approach

Spacebound is a mobile application that helps people understand astronomical distances by converting their distances walked on Earth to an interstellar scale. To better navigate outer space, the app presents predefined distance scales and journeys with various objects (planets, asteroids, stars) to explore. Spacebound hopes to be a gamified approach for exploring outer space and also an educational app where the user can learn more about objects as they visit them.

ContributorsSadachar, Shivam (Author) / O'Rourke, Joseph (Thesis director) / Loyd, Parke (Committee member) / Melodie, Kao (Committee member) / Computer Science and Engineering Program (Contributor) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147667-Thumbnail Image.png
Description

My proposed project is an educational application that will seek to simplify the<br/>process of internalizing the chord symbols most commonly seen by those learning<br/>musical improvisation. The application will operate like a game, encouraging the<br/>user to identify chord tones within time limits and award points for successfully<br/>doing so.

ContributorsOwens, Kevin Bradyn (Author) / Balasooriya, Janaka (Thesis director) / Nakamura, Mutsumi (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description
In response to the lasting negative effects of the COVID-19 pandemic on driver’s education and road safety, this thesis is intended to create an iOS application that recognizes and reports on poor driving habits. The end user opens the application to start a trip, the application records GPS data and

In response to the lasting negative effects of the COVID-19 pandemic on driver’s education and road safety, this thesis is intended to create an iOS application that recognizes and reports on poor driving habits. The end user opens the application to start a trip, the application records GPS data and information from APIs containing environmental information in a consistent, synchronized manner, patterns in said data are analyzed by the application to flag events representing different issues when driving, and when the user presses a button to end the trip, a report of the events is presented. The project was developed using a complete design process, including a full Research and Development process and detailed design documentation. Separate components of the application were developed in an iterative structure, with GPS information, the data synchronization system, API parsing and recording, data analysis, and feedback all being designed and tested separately. The application ultimately reached late beta status, with target stability and test results being achieved in typical use cases.
ContributorsBronzi, John (Author) / Meuth, Ryan (Thesis director) / Yee, Richard (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-12
165485-Thumbnail Image.png
Description
Typical programming languages involve complex syntax and structure which can be daunting to first-time programmers. Particularly, elementary-age students may not be able to understand the relationship between a mathematical-looking program and its output. Thus, I created Engram, which teaches both English syntax as well as a version of typical functional

Typical programming languages involve complex syntax and structure which can be daunting to first-time programmers. Particularly, elementary-age students may not be able to understand the relationship between a mathematical-looking program and its output. Thus, I created Engram, which teaches both English syntax as well as a version of typical functional programming language syntax. Young English speakers can learn Engram to familiarize themselves with simple English sentence structure and critical programming concepts. This project has three parts: a parser & compiler, an Integrated Developer Environment (IDE) for the compiler, and lesson plans. The lexer, parser, and compiler were created using the C++ programming language. The IDE was created using C#, .NET Framework, and Windows Forms.
ContributorsCohen, Jacob (Author) / Burger, Kevin (Thesis director) / Nelson, Brian (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05