Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 3 of 3
Filtering by

Clear all filters

Description
Efforts to quantify the diversity of the T cell repertoire have generally been unsuccessful because not all factors accounting for diversity have been considered. In order to get an accurate representation of the T cell repertoire, one must incorporate analysis of germline gene diversity, diversity from somatic recombination, joining diversity

Efforts to quantify the diversity of the T cell repertoire have generally been unsuccessful because not all factors accounting for diversity have been considered. In order to get an accurate representation of the T cell repertoire, one must incorporate analysis of germline gene diversity, diversity from somatic recombination, joining diversity from N- and P- nucleotides, and TCR chain pairing diversity. Because of advances in high-throughput sequencing techniques, estimates have been able to account for diversity from TCR genes. However the ability to account for chain pairing diversity has been more difficult. In order to do so, single cell sorting techniques must be employed. These techniques, though effective, are time consuming and expensive. For this reason, no large-scale analyses have been done on the immune repertoires using these techniques. In this study, we propose a novel method for linking the two TCR chain sequences from an individual cell. DNA origami nanostructure technology is employed to capture and bind the TCRγ and TCRδ chain mRNA inside individual cells using probe strands complementary to the C-region of those sequences. We then use a dual-primer RT and ligation molecular strategy to link the two sequences together. The result is a single amplicon containing the CDR3 region of the TCRγ and TCRδ. This amplicon can then be easily PCR amplified using sequence specific primers, and sequenced. DNA origami nanostructures offer a rapid, cost-effective method alternative to conventional single cell sorting techniques, as both TCR mRNA can be captured on one origami molecule inside a single cell. At present, this study outlines a proof-of-principle analysis of the method to determine its functionality. Using known TCRγ and TCRδ sequences, the DNA origami and RT/PCR method was tested and resulting sequence data proved the effectiveness of the method. The original TCRγ and TCRδ sequences were linked together as a single amplicon containing both CDR3 regions of the genes. Thus, this method can be employed in further research to elucidate the γδ T cell repertoire. This technology is also easily adapted to any gene target or cell type and therefore presents a large opportunity to be used in other immune repertoire analysis and other immunological studies (such as the rapid identification and subsequent production of antibodies).
ContributorsPoindexter, Morgan Elizabeth (Author) / Blattman, Joseph (Thesis director) / Yan, Hao (Committee member) / Schoettle, Louis (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
132583-Thumbnail Image.png
Description
Inhibitor of growth factor 4 (ING4) is a tumor suppressor of which low expression has been associated with poor patient survival and aggressive tumor progression in breast cancer. ING4 is characterized as a transcription regulator of inflammatory genes. Among the ING4-regulated genes is CXCL10, a chemokine secreted by endothelial cells

Inhibitor of growth factor 4 (ING4) is a tumor suppressor of which low expression has been associated with poor patient survival and aggressive tumor progression in breast cancer. ING4 is characterized as a transcription regulator of inflammatory genes. Among the ING4-regulated genes is CXCL10, a chemokine secreted by endothelial cells during normal inflammation response, which induces chemotactic migration of immune cells to the site. High expression of CXCL10 has been implicated in aggressive breast cancer, but the mechanism is not well understood. A potential signaling molecule downstream of Cxcl10 is Janus Kinase 2 (Jak2), a kinase activated in normal immune response. Deregulation of Jak2 is associated with metastasis, immune evasion, and tumor progression in breast cancer. Thus, we hypothesized that the Ing4/Cxcl10/Jak2 axis plays a key role in breast cancer progression. We first investigated whether Cxcl10 affected breast cancer cell migration. We also investigated whether Cxcl10-mediated migration is dependent on ING4 expression levels. We utilized genetically engineered MDAmb231 breast cancer cells with a CRISPR/Cas9 ING4-knockout construct or a viral ING4 overexpression construct. We performed Western blot analysis to confirm Ing4 expression. Cell migration was assessed using Boyden Chamber assay with or without exogenous Cxcl10 treatment. The results showed that in the presence of Cxcl10, ING4-deficient cells had a two-fold increase in migration as compared to the vector controls, suggesting Ing4 inhibits Cxcl10-induced migration. These findings support our hypothesis that ING4-deficient tumor cells have increased migration when Cxcl10 signaling is present in breast cancer. These results implicate Ing4 is a key regulator of a chemokine-induced tumor migration. Our future plan includes evaluation of Jak2 as an intermediate signaling molecule in Cxcl10/Ing4 pathway. Therapeutic implications of these findings are targeting Cxcl10 and/or Jak2 may be effective in treating ING4-deficient aggressive breast cancer.
ContributorsArnold, Emily (Author) / Kim, Suwon (Thesis director) / Blattman, Joseph (Thesis director) / Mason, Hugh (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
Description
The concentration necessary to kill bacterial biofilms with antimicrobials is the minimum biofilm eradication concentration (MBEC). This is usually determined using an in vitro approach and will vary within different strains of bacteria. Biomedical implants produce biofilm-related infections presenting a unique challenge due to the combination of subpopulations of the

The concentration necessary to kill bacterial biofilms with antimicrobials is the minimum biofilm eradication concentration (MBEC). This is usually determined using an in vitro approach and will vary within different strains of bacteria. Biomedical implants produce biofilm-related infections presenting a unique challenge due to the combination of subpopulations of the bacterial community and the polysaccharide matrix presented by biofilms. The purpose of this investigation is to determine how exposure times in the order of weeks to months affect the MBEC. Using an in vitro approach, Staphylococcus aureus (UAMS-1) and methicillin-resistant Staphylococcus aureus (MRSA) biofilms were produced with a 24 hour growth time and exposed to two antimicrobials, tobramycin and vancomycin, and one combination treatment that consisted of 1:1 tobramycin: vancomycin by weight. Crystal violet screening was used in order to ensure the integrity of the biofilm matrix throughout the full time of exposure. It was determined that UAMS-1 MBECs were lowered after 56 days of exposure than after 5 days for all three treatment groups. MRSA MBECs after 5 days of exposure decreased only with in vancomycin treatment group.
ContributorsSteinhauff, Douglas Busch (Author) / Caplan, Michael (Thesis director) / Overstreet, Derek (Committee member) / Castaneda, Paulo (Committee member) / Materials Science and Engineering Program (Contributor) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05