Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 10 of 108
Filtering by

Clear all filters

133900-Thumbnail Image.png
Description
22q11.2 Deletion Syndrome (22q11.2DS) is one of the most frequent chromosomal microdeletion syndromes in humans. This case study focuses on the language and reading profile of a female adult with 22q11.2 Deletion Syndrome who was undiagnosed until the age of 27 years old. To comprehensively describe the participant's profile, a

22q11.2 Deletion Syndrome (22q11.2DS) is one of the most frequent chromosomal microdeletion syndromes in humans. This case study focuses on the language and reading profile of a female adult with 22q11.2 Deletion Syndrome who was undiagnosed until the age of 27 years old. To comprehensively describe the participant's profile, a series of assessment measures was administered in the speech, language, cognition, reading, and motor domains. Understanding how 22q11.2DS has impacted the life of a recently diagnosed adult will provide insight into how to best facilitate long-term language and educational support for this population and inform future research.
ContributorsPhilp, Jennifer Lynn (Author) / Scherer, Nancy (Thesis director) / Peter, Beate (Committee member) / Department of Speech and Hearing Science (Contributor) / Sanford School of Social and Family Dynamics (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
Description
There are problems in the breeding practices of miniature horses. This study seeks to determine the source of these detrimental outcomes based on an evaluation of primary attributes selected for by breeders and the lack of genetic information and understanding of these attributes. In order to do this a program

There are problems in the breeding practices of miniature horses. This study seeks to determine the source of these detrimental outcomes based on an evaluation of primary attributes selected for by breeders and the lack of genetic information and understanding of these attributes. In order to do this a program model was created to test the effects of selection criteria on breeder behavior and the resultant foals of these crosses. Moving forwards this program will evolve into a database of the equine genome for different horses. This will allow breeders to input their horses and do faux crosses in order to decrease the incidence of negative and detrimental outcomes.
ContributorsDavis, Marissa Lynn (Author) / Oberle, Eric (Thesis director) / Martin, Thomas (Committee member) / College of Letters and Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135365-Thumbnail Image.png
Description
This study focused on the connection between the EnvZ/OmpR two-component regulatory system and the iron homeostasis system in Escherichia coli, specifically how a mutant form of EnvZ11/OmpR is able to reduce the expression of fepA::lacZ, a reporter gene fusion in E. coli. FepA is one of several outer membrane siderophore

This study focused on the connection between the EnvZ/OmpR two-component regulatory system and the iron homeostasis system in Escherichia coli, specifically how a mutant form of EnvZ11/OmpR is able to reduce the expression of fepA::lacZ, a reporter gene fusion in E. coli. FepA is one of several outer membrane siderophore receptors that allow extracellular siderophores bound to iron to enter the cells to power various biological processes. Previous studies have shown that in E. coli cells that expressed a mutant allele of envZ, called envZ11, which led to altered expression of various iron genes including down regulation of fepA::lacZ. The wild type EnvZ/OmpR system is not considered to regulate iron genes, but because these envz11 strains had downregulated fepA::lacZ, this study was undertaken to understand the connection and mechanisms of this downregulation. A large number of Lac+ revertants were obtained from the B32-2483 strain (envz11 and fepA::lacZ) and 7 Lac+ revertants that had reversion mutations not directly correcting the envZ11 allele were further characterized. With P1 phage transduction genetic mapping that involved moving a kanamycin resistance marker linked to fepA::lacZ, two Lac+ revertants were found to have their reversion mutations in the fepA promoter region, while the other five revertants had their mutations mapping outside the fepA region. These two revertants underwent DNA sequencing and found to carry two different single base pair mutations in two different locations of the fepA promoter region. Each one is in the Fur repressor binding region, but one also may have affected the Shine-Dalgarno region involved in translation initiation. All 7 reveratants underwent beta-galactosidase assays to measure fepA::lacZ expression. The two revertants that had mutations in the fepA promoter region had significantly increased fepA activity, with the revertant with the Shine-Dalgarno mutation having the most elevated fepA expression. The other 5 revertants that did not map in the fepA region had fepA expression elevated to the same level as that found in the wild type EnvZ/OmpR background. The data suggest that the negative effect of envZ11 can be overcome by multiple mechanisms, including directly correcting the envZ11 allele or changing the fepA promoter region.
ContributorsKalinkin, Victor Arkady (Co-author) / Misra, Rajeev (Co-author, Thesis director) / Mason, Hugh (Committee member) / Foy, Joseph (Committee member) / Biomedical Informatics Program (Contributor) / School of Life Sciences (Contributor) / W. P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135454-Thumbnail Image.png
Description
Mammary gland development in humans during puberty involves the enlargement of breast tissue, but this is not true in non-human primates. To identify potential causes of this difference, I examined variation in substitution rates across genes related to mammary development. Genes undergoing purifying selection show slower-than-average substitution rates, while genes

Mammary gland development in humans during puberty involves the enlargement of breast tissue, but this is not true in non-human primates. To identify potential causes of this difference, I examined variation in substitution rates across genes related to mammary development. Genes undergoing purifying selection show slower-than-average substitution rates, while genes undergoing positive selection show faster rates. These may be related to the difference between humans and other primates. Three genes were found to be accelerated were FOXF1, IGFBP5, and ATP2B2, but only the latter one was found in humans and it seems unlikely that it would be related to the differences between mammary gland development at puberty between humans and non-human primates.
ContributorsArroyo, Diana (Author) / Cartwright, Reed (Thesis director) / Wilson Sayres, Melissa (Committee member) / Schwartz, Rachel (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136626-Thumbnail Image.png
Description
Alternative polyadenylation (APA) is the biological mechanism in which the same gene can have multiple 3'untranslated region (3'UTR) isoforms due to the presence of multiple polyadenylation signal (PAS) elements within the pre mRNAs. Because APA produces mRNA transcripts that have different 3'UTR isoforms, certain transcripts may be subject to post-transcriptional

Alternative polyadenylation (APA) is the biological mechanism in which the same gene can have multiple 3'untranslated region (3'UTR) isoforms due to the presence of multiple polyadenylation signal (PAS) elements within the pre mRNAs. Because APA produces mRNA transcripts that have different 3'UTR isoforms, certain transcripts may be subject to post-transcriptional regulation by regulatory non-coding RNAs, such as microRNAs or RNA binding proteins defects of which have been implicated in diseases such as cancer. Despite the increasing level of information, functional understanding of the molecular mechanisms involved in transcription is still poorly understood, nor is it clear why APA is necessary at a cell or tissue-specific level. To address these questions I wanted to develop a set of sensor strain plasmids capable of detecting cleavage and polyadenylation in vivo, inject the complete sensor strain plasmid into C. elegans and prepare stable transgenic lines, and perform proof-of-principle RNAi feeding experiments targeting genes associated with the cleavage and polyadenylation complex machinery. I demonstrated that it was possible to create a plasmid capable of detecting cleavage and polyadenylation in C. elegans; however, issues arose during the RNAi assays indicating the sensor strain plasmid was not sensitive enough to the RNAi to effectively detect in the worms. Once the problems involved with sensitivity and variability in the RNAi effects are resolved, the plasmid would be able to better address questions regarding the functional understanding of molecular mechanisms involved in transcription termination.
ContributorsWilky, Henry Patrick (Author) / Mangone, Marco (Thesis director) / Newbern, Jason (Committee member) / Blazie, Stephen (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
136445-Thumbnail Image.png
Description
Environmental and genetic factors contribute to schizophrenia etiology, yet few studies have demonstrated how environmental stimuli impact genes associated with the disorder. Immediate early genes (IEGs) are of great interest to schizophrenia research because they are activated in response to physiological stress from the environment, and subsequently regulate the expression

Environmental and genetic factors contribute to schizophrenia etiology, yet few studies have demonstrated how environmental stimuli impact genes associated with the disorder. Immediate early genes (IEGs) are of great interest to schizophrenia research because they are activated in response to physiological stress from the environment, and subsequently regulate the expression of downstream genes that are essential to neuropsychiatric function. An IEG, early growth response 3 (EGR3) has been identified as a main gene involved in a network of transcription factors implicated in schizophrenia susceptibility. The serotonin 2A receptor (5-HT2AR) seems to play an important role in schizophrenia and the dysfunction of the 5-HT2AR encoding gene, HTR2A, within the prefrontal cortex (PFC) contributes to multiple psychiatric illnesses including schizophrenia. EGR3's role as a transcription factor that is activated by environmental stimuli suggests it may regulate Htr2a transcription in response to physiological stress, thus affecting 5-HT2AR function in the prefrontal cortex (PFC). The aim of this study was to examine the relationship between Egr3 activation and Htr2a expression after an environmental stimulus. Sleep deprivation is an acute physiological stressor that activates Egr3. Therefore to examine the relationship between Egr3 and Htr2a expression after an acute stress, wild type and Egr3 knockout mice that express EGFP under the control of the Htr2a promoter were sleep deprived for 8 hours. We used immunohistochemistry to determine the location and density of Htr2a-EGFP expression after sleep deprivation and found that Htr2a-EGFP expression was not affected by sex or subregions of the PFC. Additionally, Htr2a-EGFP expression was not affected by the loss of Egr3 or sleep deprivation within the PFC. The LPFC subregions, layers V and VI showed significantly more Htr2a-EGFP expression than layers I-III in all animals for both sleep deprivation and control conditions. Possible explanations for the lack of significant effects in this study may be the limited sample size or possible biological abnormalities in the Htr2a-EGFP mice. Nonetheless, we did successfully visualize the anatomical distribution of Htr2a in the prefrontal cortex via immunohistochemical staining. This study and future studies will provide insight into how Egr3 activation affects Htr2a expression in the PFC and how physiological stress from the environment can alter candidate schizophrenia gene function.
ContributorsSabatino, Alissa Marie (Author) / Gallitano, Amelia (Thesis director) / Hruschka, Daniel (Thesis director) / Maple, Amanda (Committee member) / Barrett, The Honors College (Contributor)
Created2014-05
136837-Thumbnail Image.png
Description
Noninvasive prenatal testing using cell-free fetal DNA (CffDNA) testing is a rapidly developing area in prenatal diagnosis. Fetal genetic testing can occur with a simple maternal blood sample, since CffDNA can be found in maternal plasma. Thus, no harm is caused to mother or fetus to obtain this genetic information,

Noninvasive prenatal testing using cell-free fetal DNA (CffDNA) testing is a rapidly developing area in prenatal diagnosis. Fetal genetic testing can occur with a simple maternal blood sample, since CffDNA can be found in maternal plasma. Thus, no harm is caused to mother or fetus to obtain this genetic information, providing significant benefits for those users. How the test should be integrated in existing prenatal programs has yet to be seen. CffDNA testing is an exciting technology and has attracted attention from many stakeholders, yet the lack of regulation and guidance has left legal, ethical, and social questions unanswered. This paper outlines a number of those issues expressed in the present literature on the matter.
ContributorsVeeder, Shaylynn Lee (Author) / Marchant, Gary (Thesis director) / Robert, Jason (Committee member) / Milleson, Valerye (Committee member) / Barrett, The Honors College (Contributor) / School of Social Transformation (Contributor) / School of Politics and Global Studies (Contributor) / Sandra Day O'Connor College of Law (Contributor) / Department of Psychology (Contributor)
Created2014-05
136286-Thumbnail Image.png
Description
This piece aims to discuss the roles of emerging geographies within the context of global supply chains, approaching the conversation with a "systems" view, emphasizing three key facets essential to a holistic and interdisciplinary environmental analysis: -The Implications of Governmental & Economic Activities -Supply Chain Enablement Activities, Risk Mitigation in

This piece aims to discuss the roles of emerging geographies within the context of global supply chains, approaching the conversation with a "systems" view, emphasizing three key facets essential to a holistic and interdisciplinary environmental analysis: -The Implications of Governmental & Economic Activities -Supply Chain Enablement Activities, Risk Mitigation in Emerging Nations -Implications Regarding Sustainability, Corporate Social Responsibility In the appreciation of the interdisciplinary implications that stem from participation in global supply networks, supply chain professionals can position their firms for continued success in the proactive construction of robust and resilient supply chains. Across industries, how will supply networks in emerging geographies continue to evolve? Appreciating the inherent nuances related to the political and economic climate of a region, the extent to which enablement activities must occur, and sustainability/CSR tie-ins will be key to acquire this understanding. This deliverable aims to leverage the work of philosophers, researchers and business personnel as these questions are explored. The author will also introduce a novel method of teaching (IMRS) in the undergraduate business classroom that challenges the students to integrate their prior experiences both in the classroom and in the business world as they learn to craft locally relevant solutions to solve complex global problems.
ContributorsVaney, Rachel Lee (Author) / Maltz, Arnold (Thesis director) / Kellso, James (Committee member) / Barrett, The Honors College (Contributor) / Department of Supply Chain Management (Contributor) / Department of Information Systems (Contributor)
Created2015-05
136034-Thumbnail Image.png
Description
There is no doubt that globalization has been a force in history , and especially in the past one hundred years. This is extremely evident in the implications of global epidemics. The global response to Severe Acute Respiratory Syndrome (SARS) revealed tensions between nation states and international health organization such

There is no doubt that globalization has been a force in history , and especially in the past one hundred years. This is extremely evident in the implications of global epidemics. The global response to Severe Acute Respiratory Syndrome (SARS) revealed tensions between nation states and international health organization such as the World Health Organization) collectively called "Global Health Governance"). The issue was sovereignty. SARS showed us that there was more state-centric resistance to the Post-Westphalian world than previously thought. Where infectious diseases are concerned, however, the eventual compliance of states with the WHO shows reluctant but tacit compliance with international intervention.
ContributorsLaw, Stephanie (Author) / Rush, James (Thesis director) / Green, Monica (Committee member) / Lundry, Christopher (Committee member) / Barrett, The Honors College (Contributor)
Created2012-05
136039-Thumbnail Image.png
Description
Former two-time Costa Rican president Dr. Oscar Arias advocates for arms control between nations and, in some cases, complete disarmament as the first step in solving grave issues of international sustainability. The three spheres of sustainability—society, economy, and environment—are explained and the ultimate goal of the compromise between all

Former two-time Costa Rican president Dr. Oscar Arias advocates for arms control between nations and, in some cases, complete disarmament as the first step in solving grave issues of international sustainability. The three spheres of sustainability—society, economy, and environment—are explained and the ultimate goal of the compromise between all three aspects is defined as the means to achieving sustainability. A brief history of the politics and culture of Costa Rica provides a glimpse into the values and society of this Central American country, including a consistent commitment to the appreciation and protection of its natural environment. Dr. Arias is credited as one of the founding fathers of the sustainable development movement, as evidenced by his political career and policies both with Costa Rica and with other international communities. A selection of Dr. Arias’ speeches and conversations of the past four decades illuminates the need for disarmament and peaceful political interactions as the catalyst for human progress and sustainable development.
ContributorsZywicki, Alexandra (Author) / Alarcon, Justo (Thesis director) / Printezis, Antonios (Committee member) / Sullivan, Claire (Committee member) / Barrett, The Honors College (Contributor)
Created2015-05