Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 21 - 30 of 56
Filtering by

Clear all filters

Description
Architecture has an ability to shape us and focus on forms and efficiency yet frequently ignores relationships between the form and cognition. This negligence creates lost opportunities for creating a link between action and perception, embodiment and aesthetics, imagination and empathy. Architecture is frequently not empathetic, lacking meaning to far

Architecture has an ability to shape us and focus on forms and efficiency yet frequently ignores relationships between the form and cognition. This negligence creates lost opportunities for creating a link between action and perception, embodiment and aesthetics, imagination and empathy. Architecture is frequently not empathetic, lacking meaning to far too many people. Considering the application of neuroscience in architecture to nurture psychological and physiological response to architecture may be key to fostering healthy and positive relationships with space. Another connection that comes up in neuro-scientific research is how creativity plays into design and the understanding of design. Often, creativity is accompanied by metaphor, and neuroscientist Ramachandran is particularly interested in this. A curious phenomenon he has focused on is synaesthesia, Synaesthesia is a Greek-based word, syn meaning joined and aisthesis meaning sensation. It occurs when "Stimulation of one sensory modality automatically triggers perception in a second modality in the absence of any direct stimulation to this modality." Further, the study and application of synaesthetic properties can help achieve this goal. Through the application of neuro-scientific research directed towards architecture, "Neuroarchitecture" is a possible tool that can create architecture that invokes positive responses in occupants. Through the consideration of building elements, natural forces, equal understanding, and synaesthesia, "neuroarchitecture" can be successful. Thus, with the consideration of neuroscience and synaesthesia there is a possibility of understanding what creates the certain emotions that one experiences in a space, and why people like certain places more than others. In a lecture covering this topic at Arizona State University's Design School, designer Ellen Lupton showed graphic visualizations of musical synaesthesia. Bird calls were translated into exceptionally fluid ribbons of moving color that ebbed and crashed with the rise and fall of the bird call. If these experiences can be expressed through digital art, then there may be a way to express them through architecture. The project takes focus on the architecture of flux, limbo, and threshold, within the specific context of the airport. The airport is a one of a kind architecture. There is little to no other architecture that serves as a threshold from one city, state, and country to another, that is full of people from all parts of the world, and is a space of limbo. In the flux of the airport, the individual feels a multitude of emotions, joys, sadness, frustration, and stresses. Studying circulation, movement of both the inhabitant and the architecture of the airport, the project will rigorously question if architecture can be scientifically formulated to create mental effects or if they are a result of atmospheric qualities.
ContributorsPniak, Nikola (Author) / Rocchi, Elena (Thesis director) / Taylor, Christopher (Committee member) / Hejduk, Renata (Committee member) / The Design School (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133108-Thumbnail Image.png
Description
Abstract White matter thickness correlates with various mental illness. Commissure white matter tracts are responsible for interconnecting the same cortical area in both hemispheres. Injury to the brain can result in thinning and shrinkage even collapsing and detachment of the white matter tracts' myelin sheaths. Injury can affect cognitive function

Abstract White matter thickness correlates with various mental illness. Commissure white matter tracts are responsible for interconnecting the same cortical area in both hemispheres. Injury to the brain can result in thinning and shrinkage even collapsing and detachment of the white matter tracts' myelin sheaths. Injury can affect cognitive function and time points are essential for therapeutic intervention. Research is beginning to identify gradual long-term neurodegenerative effects. With the advancement of brain imaging technology, we know that Wallerian degeneration has a significant negative impact on the white matter tracts throughout the brain (Johnson, Stewart, & Smith, 2013). If major tracts become injured like, the corpus callosum, then it can affect interhemispheric communication. Once myelin is damaged the axon becomes vulnerable, and the mechanisms of nerve recovery are not well known. Myelin sheath recovery has been studied in hopes to proliferate the oligodendrocytes that make up for the atrophied myelin. Neurotoxic chemicals released at activation of macrophages which hinders the brains ability to proliferate myelin protein needed for myelin differentiation adequately. In the central nervous system myelin has mechanisms to recover. Neurogenesis is a naturally occurring recovery mechanism seen after brain injury. Understanding the time points in which brain recovery occurs is important for treatment of diffuse injuries that cannot be identified through some imaging techniques. To better understand critical timepoints of natural recovery after brain injury can allow further investigation for early intervention to promote adequate recovery.
ContributorsLiptow, Kristen Ashley (Author) / Neisewander, Janet (Thesis director) / Law, L. Matthew (Committee member) / School of Social and Behavioral Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
134045-Thumbnail Image.png
Description
The mammalian target of rapamycin (mTOR) is integral in regulating cell growth as it maintains a homeostatic balance of proteins by modulating their synthesis and degradation. In the brain, mTOR regulates protein-driven neuroplastic changes that modulate learning and memory. Nevertheless, upregulation of mTOR can cause detrimental effect in spatial memory

The mammalian target of rapamycin (mTOR) is integral in regulating cell growth as it maintains a homeostatic balance of proteins by modulating their synthesis and degradation. In the brain, mTOR regulates protein-driven neuroplastic changes that modulate learning and memory. Nevertheless, upregulation of mTOR can cause detrimental effect in spatial memory and synaptic plasticity. The proline-rich Akt-substrate 40 kDa (PRAS40) is a key negative regulator of mTOR, as it binds mTOR and directly reduces its activity. To investigate the role of PRAS40 on learning and memory, we generated a transgenic mouse model in which we used the tetracycline-off system to regulate the expression of PRAS40 specifically in neurons of the hippocampus. After induction, we found that mice overexpressing PRAS40 performed better than control mice in the Morris Water Maze behavioral test. We further show that the improvement in memory was associated with a decrease in mTOR signaling, an increase in dendritic spines in hippocampal pyramidal neurons, and an increase in the levels of brain-derived neurotrophic factor (BDNF), a neurotrophin necessary for learning and memory. This is the first evidence that shows that increasing PRAS40 in the mouse brain enhances learning and memory deficits.
ContributorsSarette, Patrick William (Author) / Oddo, Salvatore (Thesis director) / Caccamo, Antonella (Committee member) / Kelleher, Raymond (Committee member) / School of Molecular Sciences (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
135065-Thumbnail Image.png
Description
Polysubstance abuse is far more common than single substance abuse. One of the most widely abused, yet greatly understudied combination of drugs is the simultaneous use of methamphetamine (meth) and alcohol. Because little research has been conducted on the co-abuse of meth and alcohol, it is important to study the

Polysubstance abuse is far more common than single substance abuse. One of the most widely abused, yet greatly understudied combination of drugs is the simultaneous use of methamphetamine (meth) and alcohol. Because little research has been conducted on the co-abuse of meth and alcohol, it is important to study the behavioral and neural mechanisms underlying the use of both to combat addiction and come closer to finding an effective treatment of this form of drug abuse. This study uses a rodent model to attempt to identify the mechanisms underlying this co-abuse through the stimulation of the medial forebrain bundle (MFB) and thus the activation of the mesocorticolimbic pathway, the brain's pleasure circuit. First, self-stimulation thresholds (the lowest electrical current the rats are willing to respond for) were determined using a process called Discrete Trials Training. This threshold was later used as a baseline measure to reference when the rats were administered the drugs of abuse: meth and alcohol, both alone and in combination. Our overall results did not show any significant effects of combining alcohol and meth relative to the effects of either drug alone, although subject attrition may have resulted in sample sizes that were statistically underpowered. The results of this and future studies will help provide a clearer understanding of the neural mechanisms underlying the polyabuse of meth and alcohol and can potentially lead to more successfully combating and treating this addiction.
ContributorsDrafton, Kaitlyn Marie (Author) / Olive, Foster (Thesis director) / Glenberg, Arthur (Committee member) / Sanford School of Social and Family Dynamics (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134795-Thumbnail Image.png
Description
Chronic restraint stress leads to apical dendritic retraction in CA3 pyramidal neurons and often no quantifiable changes in CA1 dendritic complexity. When chronic stress ends, a post-stress recovery period results in an enhancement in CA3 dendritic complexity. We investigated the relationship between CA3 and CA1 pyramidal neurons to determine whether

Chronic restraint stress leads to apical dendritic retraction in CA3 pyramidal neurons and often no quantifiable changes in CA1 dendritic complexity. When chronic stress ends, a post-stress recovery period results in an enhancement in CA3 dendritic complexity. We investigated the relationship between CA3 and CA1 pyramidal neurons to determine whether dendritic restructuring in CA3 neurons leads to region-specific changes in the dendritic complexity of CA1 neurons. Adult male Sprague-Dawley rats were restrained (wire mesh, 6h/d/21d) and brains were removed soon after restraint ended (Str-Imm) or after a 21d post-stress recovery period (Str-Rec). In addition, BDNF downregulation targeting the CA3 region prevents enhancement in dendritic complexity following recovery in chronically stressed rats, providing robust conditions to investigate the CA3-CA1 relationship. Consequently, rats were infused into the CA3 area with either an AAV vector with a coding sequence against BDNF (shRNA) or a sequence with no known mRNA complements (Scr). Apical and basal dendritic complexity of CA3 and CA1 was quantified by counting total dendritic bifurcations and dendritic intersections using the Sholl analysis (20 µm distances from soma). Please note that the quantification of the CA3 dendritic arbors was not part of this thesis project. The outcome of that investigation revealed that apical CA3 dendritic retraction was found in Str-Imm-Scr and Str-Rec-shRNA. For the CA1 apical area, gross dendritic bifurcation differences were not detected, but the Sholl quantification revealed regionally-enhanced dendritic complexity that varied by distance from the soma at the distal apical dendrites (Str-Imm-Scr) and proximal basal dendrites (Str-Rec-shRNA). For the latter, significant increases in basal branch points were detected with total branch point quantification method. Moreover, a correlation using all groups revealed a significant inverse relationship between CA3 apical dendritic complexity and CA1 basal dendritic complexity. The results demonstrate that chronic stress-induced CA3 apical dendritic retraction may relate to region-specific changes in CA1 dendritic complexity. The inability of past studies to detect changes in CA1 dendritic complexity may be due to the shortcoming of gross dendritic arbor measures in accounting for subtle region-specific alterations. To address this, the current study included a cohort with BDNF downregulated in the CA3 region. Overall, this suggests that decreased levels of BDNF in the hippocampus provide robust conditions in which changes to CA1 dendritic complexity can be detected.
ContributorsDaas, Eshaan Jatin (Author) / Conrad, Cheryl (Thesis director) / Orchinik, Miles (Committee member) / Ortiz, J. Bryce (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
137739-Thumbnail Image.png
Description
The role of retention and forgetting of context dependent sensorimotor memory of dexterous manipulation was explored. Human subjects manipulated a U-shaped object by switching the handle to be grasped (context) three times, and then came back two weeks later to lift the same object in the opposite context relative to

The role of retention and forgetting of context dependent sensorimotor memory of dexterous manipulation was explored. Human subjects manipulated a U-shaped object by switching the handle to be grasped (context) three times, and then came back two weeks later to lift the same object in the opposite context relative to that experience on the last block. On each context switch, an interference of the previous block of trials was found resulting in manipulation errors (object tilt). However, no significant re-learning was found two weeks later for the first block of trials (p = 0.826), indicating that the previously observed interference among contexts lasted a very short time. Interestingly, upon switching to the other context, sensorimotor memories again interfered with visually-based planning. This means that the memory of lifting in the first context somehow blocked the memory of lifting in the second context. In addition, the performance in the first trial two weeks later and the previous trial of the same context were not significantly different (p = 0.159). This means that subjects are able to retain long-term sensorimotor memories. Lastly, the last four trials in which subjects switched contexts were not significantly different from each other (p = 0.334). This means that the interference from sensorimotor memories of lifting in opposite contexts was weaker, thus eventually leading to the attainment of steady performance.
ContributorsGaw, Nathan Benjamin (Author) / Santello, Marco (Thesis director) / Helms Tillery, Stephen (Committee member) / Buneo, Christopher (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Harrington Bioengineering Program (Contributor)
Created2013-05
135681-Thumbnail Image.png
Description
As the incidence of dementia continues to rise, the need for an effective and non-invasive method of intervention has become increasingly imperative. Music therapy has exhibited these qualities in addition to relatively low implementation costs, therefore establishing itself as a promising means of therapeutic intervention. In this review, current research

As the incidence of dementia continues to rise, the need for an effective and non-invasive method of intervention has become increasingly imperative. Music therapy has exhibited these qualities in addition to relatively low implementation costs, therefore establishing itself as a promising means of therapeutic intervention. In this review, current research was investigated in order to determine its effectiveness and uncover the neurochemical mechanisms that lead to positive manifestations such as improved memory recall, increased social affiliation, increased motivation, and decreased anxiety. Music therapy has been found to improve several aspects of memory recall. One proposed mechanism involves temporal entrainment, during which the melodic structures present in music provide a framework for chunking information. Although entrainment's role in the treatment of motor defects has been thoroughly studied, its role in treating cognitive disorders is still relatively new. Musicians have also been shown to demonstrate extensive plastic changes; therefore, it is hypothesized that non-musicians may also glean some benefits from engaging in music. Social affiliation has been found to increase due to increases in endogenous oxytocin. Oxytocin has also been shown to strengthen hippocampal spike transmission, a promising outcome for Alzheimer's patients. An increase in motivation has also been found to occur due to music's ability to tap into the reward center of the brain. Dopaminergic transmission between the VTA, NAc and higher functioning regions such as the OFC and hypothalamus has been revealed. Additionally, relaxing music decreases stress levels and modifies associated autonomic processes, i.e. heart rate, blood pressure, and respiratory rate. On the contrary, stimulating music has been found to initiate sympathetic nervous system activity. This is thought to occur by either a reflexive brainstem response or stimulus interpretation by the amygdala.
ContributorsFlores, Catalina Nicole (Author) / Redding, Kevin (Thesis director) / Hoffer, Julie (Committee member) / Neisewander, Janet (Committee member) / School of Molecular Sciences (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135993-Thumbnail Image.png
Description
Mammalian olfaction relies on active sniffing, which both shapes and is shaped by olfactory stimuli. Habituation to repeated exposure of an olfactory stimuli is believed to be mediated by decreased sniffing; however, this decrease may be reserved by exposure to novel odorants. Because of this, it may be possible to

Mammalian olfaction relies on active sniffing, which both shapes and is shaped by olfactory stimuli. Habituation to repeated exposure of an olfactory stimuli is believed to be mediated by decreased sniffing; however, this decrease may be reserved by exposure to novel odorants. Because of this, it may be possible to use sniffing itself as a measure of novelty, and thus as a measure of odorant similarity. Thus, I investigated the use of sniffing to measure habituation, cross-habituation, and odorant similarity. During habituation experiments, increases in sniff rate seen in response to odorant presentation decreased in magnitude between the first and second presentations, suggesting of habituation. Some of this reduction in sniff rate increases was revered by the presentation of a novel odorant in cross-habituations. However the effect sizes in cross-habituation experiments were low, and the variability high, forestalling the conclusion that sniffing accurately measured cross-habituation. I discuss improvements to the experimental protocol that may allow for cross-habituation to be more accurately measured using sniffing alone in future experiments.
ContributorsVigayavel, Nirmal (Author) / Smith, Brian (Thesis director) / Sanabria, Federico (Committee member) / Gerkin, Rick (Committee member) / Barrett, The Honors College (Contributor)
Created2015-12
Description
Abstract: Behavioral evidence suggests that joint coordinated movement attunes one's own motor system to the actions of another. This attunement is called a joint body schema (JBS). According to the JBS hypothesis, the attunement arises from heightened mirror neuron sensitivity to the actions of the other person. This study uses

Abstract: Behavioral evidence suggests that joint coordinated movement attunes one's own motor system to the actions of another. This attunement is called a joint body schema (JBS). According to the JBS hypothesis, the attunement arises from heightened mirror neuron sensitivity to the actions of the other person. This study uses EEG mu suppression, an index of mirror neuron system activity, to provide neurophysiological evidence for the JBS hypothesis. After a joint action task in which the experimenter used her left hand, the participant's EEG revealed greater mu suppression (compared to before the task) in her right cerebral hemisphere when watching a left hand movement. This enhanced mu suppression was found regardless of whether the participant was moving or watching the experimenter move. These results are suggestive of super mirror neurons, that is, mirror neurons which are strengthened in sensitivity to another after a joint action task and do not distinguish between whether the individual or the individual's partner is moving.
ContributorsGoodwin, Brenna Renee (Author) / Glenberg, Art (Thesis director) / Presson, Clark (Committee member) / Blais, Chris (Committee member) / School of Historical, Philosophical and Religious Studies (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12